精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心在坐标原点,且与直线相切.

1)求直线被圆所截得的弦的长;

2)过点作两条与圆相切的直线,切点分别为求直线的方程;

3)若与直线垂直的直线与圆交于不同的两点,若为钝角,求直线轴上的截距的取值范围.

【答案】(1);(2);(3),且.

【解析】【试题分析】(1)依据题设先求圆的半径和方程,再运用弦心距、半弦长、半径之间的关系进行分析求解;(2)依据题设条件构造圆以的方程,再运用两圆的相交弦所在直线即为所求;(3)依据题设条件借助题设条件“为钝角”建立不等式分析探求:

(1)由题意得:圆心到直线的距离为圆的半径,

,所以圆的标准方程为:

所以圆心到直线的距离

(2)因为点,所以,

所以以点为圆心,线段长为半径的圆方程: (1)

又圆方程为: (2),由得直线方程:span>

(3)设直线的方程为: 联立得:

设直线与圆的交点

,得 (3)

因为为钝角,所以,

即满足,且不是反向共线,

,所以 (4)

由(3)(4)得,满足,即

反向共线时,直线过原点,此时,不满足题意,

故直线轴上的截距的取值范围是,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】a、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,现给出六个命题.

a∥b; ②a∥b; ③α∥β;

α∥β; ⑤a∥α; ⑥a∥α,

其中正确的命题是________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式|x﹣ 的解集为{x|n≤x≤m}
(1)求实数m,n;
(2)若实数a,b满足:|a+b|<m,|2a﹣b|<n,求证:|b|<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为.

(1)求椭圆的方程;

(2)设直线与椭圆相交于 两点, 分别为线段 的中点,若坐标原点在以为直径的圆上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中),的一条对称轴离最近的对称中心的距离为

的单调递增区间;

中角的对边分别是满足恰是的最大值试判断的形状

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,SA=SB=AB=BC=CA=6,且侧面ASB⊥底面ABC,则三棱锥SABC外接球的表面积为( )

A. 60π B. 56π C. 52π D. 48π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={m|mZ|m|≤2018},M的子集S满足S中任意3个元素abc不必不同),都有a+b+c≠0.求集合S的元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设首项为1的正项数列{an}的前n项和为Sn , 且Sn+1﹣3Sn=1.
(1)求证:数列{an}为等比数列;
(2)数列{an}是否存在一项ak , 使得ak恰好可以表示为该数列中连续r(r∈N* , r≥2)项的和?请说明理由;
(3)设 ,试问是否存在正整数p,q(1<p<q)使b1 , bp , bq成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
(1)设f(x)与g(x)是定义在R上的两个函数,若|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,且f(x)为奇函数,则g(x)也是奇函数;
(2)若x1 , x2∈R,都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,且函数f(x)在R上递增,则f(x)+g(x)在R上也递增;
(3)已知a>0,a≠1,函数f(x)= ,若函数f(x)在[0,2]上的最大值比最小值多 ,则实数a的取值集合为
(4)存在不同的实数k,使得关于x的方程(x2﹣1)2﹣|x2﹣1|+k=0的根的个数为2个、4个、5个、8个.则所有正确命题的序号为

查看答案和解析>>

同步练习册答案