精英家教网 > 高中数学 > 题目详情
在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为A1B1,CD的中点.
(1)求直线EC与AF所成角的余弦值;
(2)求二面角E-AF-B的余弦值.

【答案】分析:(1)通过建立空间直角坐标系,得到的坐标,利用它们的夹角公式即可得到异面直线EC与AF所成角的余弦值;
(2)利用线面垂直的性质求出平面ABCD与平面AEF的一个法向量,利用法向量的夹角即可得到二面角的余弦值.
解答:解:(1)建立空间直角坐标系.
则A(2,0,0),F(0,1,0),C(0,2,0),E(2,1,2),


故直线EC与AF所成角的余弦值为
(2)平面ABCD的一个法向量为
设平面AEF的一个法向量为
,∴
令x=1,则y=2,z=-1

由图知二面角E-AF-B为锐二面角,其余弦值为
点评:熟练掌握通过建立空间直角坐标系、利用异面直线的方向向量的夹角公式即可得到异面直线EC与AF所成角的余弦值、利用两个平面的法向量的夹角得到二面角的余弦值的方法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点,那么异面直线OE和FD1所成的角的余弦值等于(  )
A、
10
5
B、
15
5
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体AC1中,G是AA1的中点,则BD到平面GB1D1的距离是(  )
A、
6
3
B、
2
6
3
C、
2
3
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,在棱长为1的正方体A'C中,过BD及B'C'的中点E作截面BEFD交C'D'于F.
(1)求截面BEFD与底面ABCD所成锐二面角的大小;
(2)求四棱锥A'-BEFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海)如图,在棱长为2的正方体ABCD-A'B'C'D'中,E,F分别是A'B'和AB的中点,求异面直线A'F与CE所成角的大小 (结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:黑龙江省鹤岗一中2010-2011学年高一下学期期末考试数学理科试题 题型:013

在棱长为2的正方体A中,点E,F分别是棱AB,BC的中点,则点到平面EF的距离是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案