精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,且Sn=4an-p,其中p是不为零的常数.
(1)证明:数列{an}是等比数列;
(2)当p=3时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的通项公式.
分析:(1)通过Sn=4an-p,利用an=Sn-Sn-1,求出an=
4
3
an-1
,利用等比数列的定义证明数列{an}是等比数列;
(2)当p=3时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,推出bn+1-bn=(
4
3
)
n-1
,利用bn=b1+(b2-b′1)+(b3-b2)++(bn-bn-1),求数列{bn}的通项公式.
解答:证明:(1)证:因为Sn=4an-p(n∈N*),则Sn-1=4an-1-p(n∈N*,n≥2),
所以当n≥2时,an=Sn-Sn-1=4an-4an-1,整理得an=
4
3
an-1
.(5分)
由Sn=4an-p,令n=1,得a1=4a1-p,解得a1=
p
3

所以an是首项为
p
3
,公比为
4
3
的等比数列.(7分)
(2)解:因为a1=1,则an=(
4
3
)n-1

由bn+1=an+bn(n=1,2,),得bn+1-bn=(
4
3
)n-1
,(9分)
当n≥2时,由累加得bn=b1+(b2-b′1)+(b3-b2)+…+(bn-bn-1)=2+
1-(
4
3
)
n-1
1-
4
3
=3(
4
3
)n-1-1

当n=1时,上式也成立.(14分)
点评:本题是中档题,考查数列的通项公式的应用,等比数列的证明,注意利用an=Sn-Sn-1时,必须验证n=1的情形,否则容易出错误.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案