精英家教网 > 高中数学 > 题目详情

【题目】某地区为了调查高粱的高度、粒的颜色与产量的关系,对700棵高粱进行抽样调查,得到高度频数分布表如下:

表1:红粒高粱频数分布表

农作物高度()

频 数

2

5

14

13

4

2

表2:白粒高粱频数分布表

农作物高度()

频 数

1

7

12

6

3

1

(1)估计这700棵高粱中红粒高粱的棵数;

(2)估计这700棵高粱中高粱高()在的概率;

(3)在样本的红粒高粱中,从高度(单位:)在中任选3棵,设表示所选3棵中高(单位:)在的棵数,求的分布列和数学期望

【答案】(1)400;(2)0.6;(3)见解析.

【解析】

1)样本中红粒高粱为40棵,白粒高粱30棵,由抽样比例可得这亩地中红粒高粱棵数为400

2)样本中高在[165180)的棵数为42,样本容量为70,由此能求出样本中高在[165180)的频率.

3的可能值为,由超几何分布计算出可能取值的概率,列出分布列和求出期望即可.

(1)样本中红粒高粱为40棵,白粒高粱30棵,所以红粒高粱棵数大约为(棵)

(2)由表1、表2可知,样本中高在的棵数为:,样本容量为70,

∴样本中高在的频率.从而估计这700棵高粱中高在的概率为.

(3)根据题意知:的可能值为

所以

所以的分布列为

1

2

3

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论的单调性.

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,的中点.将沿折起,使折起后平面平面,则异面直线所成角的余弦值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:

年份(年)

维护费(万元)

已知.

(I)求表格中的值;

(II)从这年中随机抽取两年,求平均每台设备每年的维护费用至少有年多于万元的概率;

(Ⅲ)求关于的线性回归方程;并据此预测第几年开始平均每台设备每年的维护费用超过万元.

参考公式:用最小二乘法求线性回归方程的系数公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过点,且离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点任作一条直线与椭圆交于不同的两点.在轴上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高万元,已知建筑第5层楼房时,每平方米建筑费用为万元.

若学生宿舍建筑为x层楼时,该楼房综合费用为y万元,综合费用是建筑费用与购地费用之和,写出的表达式;

为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底而为正方形,底面,点为棱的中点,点分别为棱上的动点(与所在棱的端点不重合),且满足.

(1)证明:平面平面

(2)当三棱锥的体积最大时,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图像关于直线对称.

1)求的值;

2)判断并证明函数在区间上的单调性;

3)若直线的图像无公共点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题错误的是( )

A. 命题“若,则”的逆否命题为“若 ,则

B. 为假命题,则均为假命题

C. 对于命题,使得,则,均有

D. ”是“”的充分不必要条件

查看答案和解析>>

同步练习册答案