精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若对任意的,都有成立,求实数的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)根据“零点分段法”分为三种情形,分别解出不等式,再取并集即可;(2)将用分段函数进行表示,令,原题意等价于函数的图象在直线的下方或在直线上,结合图可得结果.

试题解析:(1)当时,不等式转化为,解得

时,不等式转化为,解得

时,不等式转化为,解得.

综上所述,不等式的解集为.

(2)由(1)得,

作出其函数图象如图所示:

,若对任意的,都有成立,

即函数的图象在直线的下方或在直线上.

时,,无解;

时,,解得

时,,解得.

综上可知,当时满足条件,故实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥MO分别为CDAC的中点,平面ABCD

求证:平面平面PAC

是否存在线段PM上一点N,使得平面PAB,若存在,求的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.

(1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为,求的分布列、数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从一堆产品正品与次品都多于2中任取2件,观察正品件数和次品件数,则下列说法:

恰好有1件次品恰好2件都是次品是互斥事件

至少有1件正品全是次品是对立事件

至少有1件正品至少有1件次品是互斥事件但不是对立事件

至少有1件次品全是正品是互斥事件也是对立事件

其中正确的有______填序号

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为促进全面健身运动,某地跑步团体对本团内的跑友每周的跑步千米数进行统计,随机抽取的100名跑友,分别统计他们一周跑步的千米数,并绘制了如图频率分布直方图.

1)由频率分布直方图计算跑步千米数不小于70千米的人数;

2)已知跑步千米数在的人数是跑步千米数在,跑步千米数在的人数是跑步千米数在,现在从跑步千米数在的跑友中抽取3名代表发言,用表示所选的3人中跑步千米数在的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心为坐标原点、焦点在坐标轴上的椭圆经过点和点,直线与椭圆交于不同的两点.

1)求椭圆的标准方程;

2)若椭圆上存在点,使得四边形恰好为平行四边形,求直线与坐标轴围成的三角形面积的最小值以及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为双曲线的左、右焦点,过的直线与圆相切于点,且,则双曲线的离心率为( )

A. B. 2 C. 3 D.

查看答案和解析>>

同步练习册答案