精英家教网 > 高中数学 > 题目详情
在对人们的休闲方式的一次调查中,共调查了130人,其中女性70人,女性中有40人主要的休闲方式是看电视;男性中有35人主要的休闲方式是运动.
(Ⅰ)根据以上数据完善下列2×2列联表(表1);
(Ⅱ)能否有95%的把握认为休闲方式与性别有关.
表1
合计
看电视40
运动35
合计70
参考公式x2=
n(n11n22-n12n21)2
n+1n+2n1+n2+

表2
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
考点:独立性检验的应用
专题:应用题,概率与统计
分析:(1)根据共调查了130人,其中女性70人,女性中有40人主要的休闲方式是看电视;男性中有35人主要的休闲方式是运动,得到列联表.
(2)根据列联表中所给的数据做出观测值,把观测值同临界值进行比较得到有95%的把握认为休闲方式与性别有关.
解答: 解:(1)
合计
看电视254065
运动353065
合计6070130
(4分)
(2)Χ2=
130(25×30-35×40)2
60×70×130×130
=
65
21
≈3.095<3.841

∴没有95%的把握认为休闲方式与性别有关.(10分)
点评:本题考查独立性检验的应用和列联表的做法,本题解题的关键是正确计算出这组数据的观测值,理解临界值对应的概率的意义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

要做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为(  )
A、
3
3
 cm
B、
10
3
3
 cm
C、
16
3
3
 cm
D、
20
3
3
 cm

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+ax2),a∈R且a≠0.
(1)当a=-4时,求F(x)=f(x)-2x的最大值;
(2)求f(x)的单调区间;
(3)当n∈N*,求证:
1
12+n2
+
2
22+n2
+
3
32+n2
+…+
n
n2+n2
1
2
ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的图象如图所示,则不等式(x+3)•f′(x)<0的解集为(  )
A、(l,+∞)
B、(-∞,-3)
C、(-∞,-1)∪(1,+∞)
D、(-∞,-3)∪(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

棱长为2的正方体的外接球的表面积为(  )
A、4πB、12π
C、24πD、48π

查看答案和解析>>

科目:高中数学 来源: 题型:

2cos55°-
3
sin5°
cos5°
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=
4-x2
+1(-2≤x≤2)与直线y=kx-2k+4有两个不同的交点时实数k的范围是(  )
A、(
5
12
3
4
]
B、(
5
12
,+∞)
C、(
1
3
3
4
D、(-∞,
5
12
)∪(
3
4
,+∞)

查看答案和解析>>

同步练习册答案