精英家教网 > 高中数学 > 题目详情

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

【答案】A
【解析】解:由已知可得函数y=Asin(ωx+)的图象经过(﹣ ,2)点和(﹣ ,2) 则A=2,T=π即ω=2
则函数的解析式可化为y=2sin(2x+),将(﹣ ,2)代入得
+= +2kπ,k∈Z,
即φ= +2kπ,k∈Z,
当k=0时,φ=
此时
故选A
根据已知中函数y=Asin(ωx+)在一个周期内的图象经过(﹣ ,2)和(﹣ ,2),我们易分析出函数的最大值、最小值、周期,然后可以求出A,ω,φ值后,即可得到函数y=Asin(ωx+)的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校随机抽取100名学生调查寒假期间学生平均每天的学习时间,被调查的学生每天用于学习的时间介于1小时和11小时之间,按学生的学习时间分成5组:第一组[1,3),第二组[3,5),第三组[5,7),第四组[7,9),第五组[9,11],绘制成如图所示的频率分布直方图.
(Ⅰ)求学习时间在[7,9)的学生人数;
(Ⅱ)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人的学习时间在第四组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为为参数, ),直线,若直线与曲线C相交于A,B两点,且

(Ⅰ)求

(Ⅱ)若M,N为曲线C上的两点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系, 曲线的参数方程为为参数) ;在以原点为极点, 轴的正半轴为极轴的极坐标系中, 曲线的极坐标参数方程为.

1)求曲线的极坐标方程和曲线的直角坐标方程;

2)若射线与曲线,的交点分别为 (异于原点). 当斜率, 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+)(A,ω,是常数,A>0,ω>0)的部分图象如图所示,下列结论: ①最小正周期为π;
②将f(x)的图象向左平移 个单位,所得到的函数是偶函数;
③f(0)=1;


其中正确的是(

A.①②③
B.②③④
C.①④⑤
D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosα= ,cos(α﹣β)= ,且0<β<α<
(1)求tanα的值;
(2)求β.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C方程为 (a>b>0),左、右焦点分别是F1 , F2 , 若椭圆C上的点P(1, )到F1 , F2的距离和等于4. (Ⅰ)写出椭圆C的方程和焦点坐标;
(Ⅱ)设点Q是椭圆C的动点,求线段F1Q中点T的轨迹方程;
(Ⅲ)直线l过定点M(0,2),且与椭圆C交于不同的两点A,B,若∠AOB为锐角(O为坐标原点),求直线l的斜率k0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,半径为的圆相切,圆心轴上且在直线的上方.

(Ⅰ)求圆的标准方程;

(Ⅱ)过点的直线与圆交于两点(轴上方),问在轴正半轴上是否存在点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案