精英家教网 > 高中数学 > 题目详情
如图,已知直线l:y=2x-4交抛物线y2=4x于A、B两点,试在抛物线AOB这段曲线上求一点P,使△ABP的面积最大,并求这个最大面积.
y=2x-4
y2=4x
得:4x2-20x+16=0,即x2-5x+4=0,
所以A(4,4)、B(1,-2).
|AB|=3
5
.…(4分)
设点P(t2,2t)(-1<t<2),则P到直线l的距离为:d=
|2t2-2t-4|
5
=
|2(t+1)(t-2)|
5

所以S△ABP=
1
2
•|AB|•d=3|(t+1)(t-2)|

故当t=
1
2
,即点P(
1
4
,1)
时,△ABP的面积最大为
27
4
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,F1,F2分别是椭圆的左、右焦点,过点F2与x轴不垂直的直线l交椭圆于A、B两点,则△ABF1的周长为4
2

(1)求椭圆的方程;
(2)若C(
1
3
,0),使得|AC|=|BC|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知焦点在x轴上的椭圆
x2
20
+
y2
b2
=1(b>0)
经过点M(4,1),直线l:y=x+m交椭圆于A,B两不同的点.
(1)求该椭圆的标准方程;
(2)求实数m的取值范围;
(3)是否存在实数m,使△ABM为直角三角形,若存在,求出m的值,若不存,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的方程为x2=4y,直线y=2与抛物线C相交于M,N两点,点A,B在抛物线C上.
(Ⅰ)若∠BMN=∠AMN,求证:直线AB的斜率为
2

(Ⅱ)若直线AB的斜率为
2
,求证点N到直线MA,MB的距离相等.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设P(x0,y0)是抛物线y2=2px(p>0)上异于顶点的定点,A(x1,y1),B(x2,y2)是抛物线上的两个动点,且直线PA与PB的倾斜角互补
(1)求
y1+y2
y0
的值
(2)证明直线AB的斜率是非零常数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)已知过椭圆中心,且斜率为k(k≠0)的直线与椭圆交于A、B两点,P是线段AB的垂直平分线与椭圆E的一个交点,若△APB的面积为
40
9
,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

点P(4,4),圆C:(x-1)2+y2=5与椭圆E:
x2
18
+
y2
2
=1
有一个公共点A(3,1),F1、F2分别是椭圆左、右焦点,直线PF1与圆C相切.设Q为椭圆E上的一个动点,求
AP
AQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)与直线x+y-1=0相交于A、B两点.
(1)若椭圆的半焦距c=
3
,直线x=±a与y=±b围成的矩形ABCD的面积为8,求椭圆的方程;
(2)若O(
OA
OB
=0
为坐标原点),求证:
1
a2
+
1
b2
=2

(3)在(2)的条件下,若椭圆的离心率e满足
3
3
≤e≤
2
2
,求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.

查看答案和解析>>

同步练习册答案