精英家教网 > 高中数学 > 题目详情
19.化简下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(-$\frac{8}{27}$)${\;}^{\frac{1}{3}}}$+lg$\frac{1}{5}$-lg2.

分析 (1)利用三角函数的诱导公式以及两角和差的正弦公式进行化简即可.
(2)根据对数和指数幂的运算法则进行化简即可.

解答 解(1)sin23°cos7°+cos23°sin367°=sin23°cos7°+cos23°sin(360°+7°)
=sin23°cos7°+cos23°sin7°=sin(23°+7°)=sin30°=$\frac{1}{2}$;
(2)${(1+lg5)^0}+{(-\frac{8}{27})^{\frac{1}{3}}}+lg\frac{1}{5}-lg2$
=1+$[(-\frac{2}{3})^{3}]^{\frac{1}{3}}$-(lg5+lg2)=1-$\frac{2}{3}$-1=-$\frac{2}{3}$.

点评 本题主要考查三角函数值的化简和求解以及对数和指数幂的运算,利用相应的公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设函数$f(x)=\left\{\begin{array}{l}{e^x}-a(x<1)\\ ln(x+a)(x≥1).\end{array}\right.$其中a>-1.
①当a=0时,若f(x)=0,则x=1;
②若f(x)在(-∞,+∞)上是单调递增函数,则a的取值范围[ee-1-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x3-6x2+9x-10的零点个数为1 个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知y=f′(x)是函数$f(x)=\frac{1}{3}{x^3}+2{x^2}+5$的导数,则f′(1)=(  )
A.$\frac{22}{3}$B.10C.5D.$\frac{10}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=log23,b=log25,c=-1,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点M(-3,4)是角α终边上一点,则有(  )
A.$sinα=-\frac{3}{5}$B.$cosα=-\frac{4}{5}$C.$tanα=-\frac{4}{3}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$z=-\frac{1}{2}+\frac{{\sqrt{3}i}}{2}$.
(1)$\bar z$是z的共轭复数,求${\bar z^2}+\bar z+1$的值;
(2)类比数列的有关知识,求${S_{2016}}=1+z+{z^2}+…+{z^{2015}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在研究色盲与性别的关系调查中,调查了男性240人,其中有40人患色盲,调查的260名女性中有10人患色盲.
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)能否有99.9%的把握认为“性别与患色盲有关系”?
附1:随机变量K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
附2:临界值参考表:
P(K2≥k00.100.050.0250.100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.P($\sqrt{2}$,1)是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的一点,且|PF1|-|PF2|=2,若抛物线的顶点是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的中心,焦点是双曲线的右顶点.
(1)求双曲线的渐近线与抛物线的准线方程;
(2)若直线l过点C(2,1)交抛物线于M,N两点,是否存在直线l,使得C恰为弦MN的中点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案