精英家教网 > 高中数学 > 题目详情

【题目】设直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与曲线C交于M,N两点,点A(1,0),求 + 的值.

【答案】
(1)解:由曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,可得直角坐标方程:y2=4x
(2)解:把直线l的参数方程 (t为参数)代入曲线C的直角坐标方程可得:3t2﹣8t﹣16=0,

∴t1+t2= ,t1t2=﹣

∴|t1﹣t2|= = =

+ = = = =


【解析】(1)由曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,利用互化公式可得直角坐标方程.(2)把直线l的参数方程代入曲线C的直角坐标方程可得:3t2﹣8t﹣16=0,可得|t1﹣t2|= + = =

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知是上、下底边长分别为26,高为的等腰梯形,将它沿对称轴折叠,使二面角为直二面角.

1)证明:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域分别是AB的函数 ,规定:

现给定函数

(1) ,写出函数的解析式;

(2) 时,求问题(1)中函数的值域;

(3) 请设计一个函数,使得函数为偶函数且不是常数函数,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= ,f(x)=g(x)﹣ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数 在某一周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(Ⅰ)请将上表数据补充完整,函数的解析式(直接写出结果即可)

(Ⅱ)求函数的单调递增区间;/span>

(Ⅲ)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: 表1:男生表2:女生

等级

优秀

合格

尚待改进

等级

优秀

合格

尚待改进

频数

15

x

5

频数

15

3

y


(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

男生

女生

总计

优秀

非优秀

总计

参考数据与公式:
K2= ,其中n=a+b+c+d.
临界值表:

P(K2>k0

0.05

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC内角A,B,C所对的边分别为a,b,c,且
(1)若 ,求△ABC的面积;
(2)若 ,且c>b,BC边的中点为D,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知qn均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn1,xi∈M,i=1,2,…,n}.

(1)q=2,n=3时,用列举法表示集合A.

(2)s,t∈A,s=a1+a2q+…+anqn1,t=b1+b2q+…+bnqn1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.

查看答案和解析>>

同步练习册答案