【题目】
甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.
(1)求的分布列及数学期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.
【答案】(1),ξ的分布列为
ξ | 0 | 1 | 2 | 3 |
P | (1-a)2 | (1-a2) | (2a-a2) |
(2)
【解析】
(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.
P(ξ=0)=(1-a)2=(1-a)2;
P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);
P(ξ=2)=·a(1-a)+a2=(2a-a2);
P(ξ=3)=·a2=.
所以ξ的分布列为
ξ | 0 | 1 | 2 | 3 |
P | (1-a)2 | (1-a2) | (2a-a2) |
ξ的数学期望为
E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.
(2)P(ξ=1)-P(ξ=
P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;
P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.
由和0<a<1,得0<a≤,即a的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知抛物线:()的焦点为,准线为,若点在抛物线上,点在直线上,且是周长为12的等边三角形.
(1)求抛物线的标准方程;
(2)设过点的直线与抛物线交于不同的两点,,若,求直线斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区拟将一半径为的半圆形绿地改建为等腰梯形(如图,其中为圆心,点在半圆上)的放养观赏鱼的鱼池,周围四边建成观鱼长廊(宽度忽略不计).设,鱼池面积为(单位:).
(1)求S关于的函数表达式,并求鱼池面积何时最大;
(2)已知鱼池造价为每平方米2000元,长廊造价为每米3000元,问此次改建的最高造价不超过多少?(取计算)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+3.
(1)求{an}的通项公式;
(2)设bn,求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.
(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;
(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高).现从参赛者中抽取了人,按年龄分成5组,第一组: ,第二组: ,第三组: ,第四组: ,第五组: ,得到如图所示的频率分布直方图,已知第一组有6人.
(1)求;
(2)求抽取的人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户 五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(Ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;
(Ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com