精英家教网 > 高中数学 > 题目详情

【题目】在古代,直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.三国时期吴国数学家赵爽用“弦图”( 如图) 证明了勾股定理,证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”这里的“实”可以理解为面积.这个证明过程体现的是这样一个等量关系:“两条直角边的乘积是两个全等直角三角形的面积的和(朱实二 ),4个全等的直角三角形的面积的和(朱实四) 加上中间小正方形的面积(黄实) 等于大正方形的面积(弦实)”. 若弦图中“弦实”为16,“朱实一”为,现随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为( )

A. B. C. D.

【答案】D

【解析】∵弦图中弦实16,“朱实一

∴大正方形的面积为16,一个直角三角形的面积为

,“,则,解得.

,即.

∴小正方形的边长为

∴随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2BC,P是线段AB中点,平面ABCD.

(1)求证:平面EPC;

(2)问在EP上是否存在点F,使平面平面BFC?若存在,求出的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:

(1)画出散点图;

(2)求回归直线方程;

(3)据此估计广告费用为9万元时,销售收入y的值.

注:①参考公式:线性回归方程系数公式

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,…,是1,2,…,的一个排列,把排在的左边且比小的数的个数称为的顺序数,如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0,则在1至8这8个数的排列中,8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为

A. 96B. 144C. 192D. 240

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四位贵宾,应分别对应坐在四个席位上,现在这四人均未留意,在四个席位上随便就座.

1)求这四人恰好都坐在自己席位上的概率;

2)求这四人恰好都没坐在自己席位上的概率;

3)求这四人恰好有位坐在自己席位上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小李在做一份调查问卷,共有4道题,其中有两种题型,一种是选择题,共2道,另一种是填空题,共2道.

(1)小李从中任选2道题解答,每一次选1题(不放回),求所选的题不是同一种题型的概率;

(2)小李从中任选2道题解答,每一次选1题(有放回),求所选的题不是同一种题型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是追踪调查200个某种电子元件寿命(单位:)频率分布直方图,如图:

其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )

①寿命在300-400的频数是90;

②寿命在400-500的矩形的面积是0.2;

③用频率分布直方图估计电子元件的平均寿命为:

④寿命超过的频率为0.3

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长均相等的四棱锥, 为底面正方形的中心, ,分别为侧棱,的中点,有下列结论正确的有:( )

A.∥平面B.平面∥平面

C.直线与直线所成角的大小为D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又有零点的是(

A.B.C.D.

查看答案和解析>>

同步练习册答案