精英家教网 > 高中数学 > 题目详情

【题目】如图,已知长方形中,, 的中点。将 沿折起,使得平面平面

(1)求证:

(2)若点是线段上的一动点,问点E在何位置时,二面角的余弦值为

【答案】(1)详见解析(2的中点

【解析】试题分析:(1)由已知条件可以比较容易的建立空间坐标系,因此求解时可采用空间向量求解,求出直线的方向向量和平面的法向量后,证明两直线垂直即证明两直线的方向向量是垂直的,二面角的大小可转化为两个半平面法向量的夹角,因此(2)求解时先设出点的位置,直线的方向向量和平面法向量夹角转化为二面角求得点的位置

试题解析:(1)因为平面平面 的中点, 的中点O,连结OD,则平面,取AB的中点N,连结ON,则,以O为原点如图建立空间直角坐标系,根据已知条件,得

,则

所以,故

)设,因为平面的一个法向量

设平面的一个法向量为

,得,所以

因为

求得,所以的中点。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义“正对数”: ,现有四个命题:

①若,则

②若,则

③若,则

④若,则

其中的真命题有:____________ (写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义在R上的奇函数,当时x≥0,f(x)=x2+2x.
(1)求函数f(x)的解析式;
(2)解不等式f(x)≥x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数满足f(x+1)﹣f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[﹣1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】样本a1 , a2 , a3 , …,a10的平均数为 ,样本b1 , b2 , b3 , …,b10的平均数为 ,那么样本a1 , b1 , a2 , b2 , …,a10 , b10的平均数为( )
A.+
B. +
C.2( +
D. +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为3万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)= ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为 分别是它的左、右焦点,且存在直线,使关于的对称点恰好是圆 )的一条直径的两个端点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与抛物线)相交于两点,射线与椭圆分别相交于点.试探究:是否存在数集,当且仅当时,总存在,使点在以线段为直径的圆内?若存在,求出数集;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高二年级学生对教师教学的意见,打算从高二年级883名学生中抽取80名进行座谈,若采用下面的方法选取:先用简单随机抽样从883人中剔除3人,剩下880人再按系统抽样的方法进行,则每人入选的概率是(
A.
B.
C.
D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,x∈[2,5].
(1)判断函数f(x)的单调性,并用定义证明你的结论;
(2)求不等式f(m+1)<f(2m﹣1)的解集.

查看答案和解析>>

同步练习册答案