已知为椭圆的左、右焦点,是坐标原点,过作垂直于轴的直线交椭圆于.
(Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点的直线与椭圆交于、两点,若,求直线的方程.
(1);(2)或 .
【解析】本试题主要考查了椭圆的方程,直线与椭圆的位置关系的运用。第一问中,由条件知,且,由,
解得,,从而得到椭圆的方程,
第二问中,设直线方程,代入椭圆方程得.结合韦达定理表示
得到k的值。
解:(Ⅰ)由条件知,且,由,
解得, , ………………………………………………4分
所以椭圆方程为. ………………………………………… 5分
(Ⅱ)设点A,B,
当轴时,A,B,所以, ……………………6分
设直线的方程为,
代入椭圆方程得. ………………………8分
所以 ………… ……………………… 9分
由,得. ………………………………… 10分
.
代入得,
解得. ………………………………… 12分
所以直线的方程为.
即或 . ……………………………………… 14分
科目:高中数学 来源: 题型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的
直线与椭圆相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足,
()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的
直线与椭圆相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足,
()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年贵州省高三第一次月考文科数学 题型:解答题
(本小题满分12分)已知椭圆的方程为 ,双曲线的左、右焦
点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点.
(1)求双曲线的方程;
(2)若直线与双曲线C2恒有两个不同的交点A和B,求的范围。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com