精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)判断的单调性;

(2)若函数存在极值,求这些极值的和的取值范围.

【答案】(1)见解析;(2)

【解析】

1)求出导函数,对),用判别式进行分类讨论,以确定的零点与符号,从而确定的单调区间;

2)题意说明上有解,且在解的两侧符号相反.

(1)因为,所以,令

,即时,恒成立,此时

所以函数上为减函数;,即时,有不相等的两根,

设为),则

时,

此时,所以函数上为减函数;

时,,此时,所以函数上为增函数.

(2)对函数求导得. 因为存在极值,

所以上有解,即方程上有解,

.显然当时,无极值,不合题意,

所以方程必有两个不等正根.

设方程的两个不等正根分别为,则

由题意知

即这些极值的和的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

“梅实初黄暮雨深”.请用样本平均数估计镇明年梅雨季节的降雨量;

“江南梅雨无限愁”.镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?

(完善列联表,并说明理由).

亩产量\降雨量

合计

<600

2

1

合计

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,各棱长均为4, 分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则满足的实数的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,且,四边形满足为侧棱上的任意一点.

1)求证:平面平面.

2)是否存在点,使得直线与平面垂直?若存在,写出证明过程并求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个点A2,1),B3,2),D(-1,4).

1)求证:

2)要使四边形ABCD为矩形,求点C的坐标,并求矩形ABCD两对角线所夹锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设的交点为,当变化时, 的轨迹为曲线.

(1)写出的普遍方程及参数方程;

(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为 为曲线上的动点,求点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的首项,该数列是公比为的等比数列.记.

(1)证明:当时,对一切,都有.

(2)当时,是否存在自然数,使得对任何自然数,都有

查看答案和解析>>

同步练习册答案