精英家教网 > 高中数学 > 题目详情

【题目】椭圆的左焦点为,直线与椭圆相交于点,当的周长最大时, 的面积是(  )

A. B. C. D.

【答案】B

【解析】设右焦点为连接当直线过右焦点时, 的周长最大由椭圆的定义可得 的周长的最大值 代入椭圆标准方程得 解得此时的面积,故选B.

【方法点晴】本题主要考查椭圆的定义、椭圆的几何性质三角形面积公式及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用椭圆的几何性质得到当直线过右焦点时, 的周长最大进而求解的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是函数图象上的点,是双曲线在第四象限这一分支上的动点,过点作直线,使其与双曲线只有一个公共点,且与轴、轴分别交于点,另一条直线轴、轴分别交于点

则(1)为坐标原点,三角形的面积为__________

(2)四边形面积的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明;
(3)求函数f(x)在区间[﹣5,﹣1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中表示同一函数的是(
A.
B. ,g(x)=x+1
C.f(x)=|x|,
D. ,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前项和为,满足,且,公比大于1的等比数列满足 .

(1)求证数列是等差数列,并求其通项公式;

(2)若,求数列的前项和

(3)在(2)的条件下,若对一切正整数恒成立,求实数的取值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),

(Ⅰ) 试求曲线在点处的切线l与曲线的公共点个数;(Ⅱ) 若函数有两个极值点,求实数a的取值范围.

(附:当x趋近于0时, 趋向于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是(

A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油
D.甲车以80千米/小时的速度行驶1小时,消耗10升汽油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax﹣(m﹣2)ax (a>0且a≠1)是定义域为R的奇函数.
(1)求m的值;
(2)若f(1)<0,试判断y=f(x)的单调性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围;
(3)若f(1)= ,g(x)=a2x+a2x﹣2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度单位:米),如图所示,垂直放置的标杆的高度米,已知 .

1)该班同学测得一组数据: 请据此算出的值;

2该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离单位:米),使的差较大,可以提高测量精确度,若观光塔高度为136米,问为多大时, 的值最大?

查看答案和解析>>

同步练习册答案