精英家教网 > 高中数学 > 题目详情
18.在复平面内,复数$\frac{2}{1+i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:在复平面内,复数$\frac{2}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}$=1-i对应的点(1,-1)位于第四象限.
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:AB∥MOC;
(2)求证:平面MOC⊥平面VAB;
(3)求二面角M-OC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(0,cosθ),θ∈[-$\frac{π}{2}$,$\frac{π}{2}$],则|$\overrightarrow{a}$+$\overrightarrow{b}$|的取值范围是(  )
A.[0,$\sqrt{2}$]B.[0,2]C.[1,2]D.[$\sqrt{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在三棱锥P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,AC=2,AB=1,∠BAC=60°,则三棱锥P-ABC的外接球的表面积为(  )
A.13πB.14πC.15πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A的坐标为(4,1),点B(-7,-2)关于直线y=x的对称点为C.
(Ⅰ)求以A、C为直径的圆E的方程;
(Ⅱ)设经过点A的直线l与圆E的另一个交点为D,|AD|=8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1(b>0)$的一条渐近线方程为3x+2y=0,则b等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设m,n(3≤m≤n)是正整数,数列Am:a1,a2,…,am,其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若数列Am满足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,总存在k(1≤k≤m)有ai+aj=ak,则称数列Am是“好数列”.
(Ⅰ)当m=6,n=100时,
(ⅰ)若数列A6:11,78,x,y,97,90是一个“好数列”,试写出x,y的值,并判断数列:11,78,90,x,97,y是否是一个“好数列”?
(ⅱ)若数列A6:11,78,a,b,c,d是“好数列”,且a<b<c<d,求a,b,c,d共有多少种不同的取值?
(Ⅱ)若数列Am是“好数列”,且m是偶数,证明:$\frac{{{a_1}+{a_2}+…+{a_m}}}{m}≥\frac{n+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0且a≠1,函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$满足f(0)=2,f(-1)=3,则f(f(-3))=(  )
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在矩形ABCD中,AB=2,BC=1,那么$\overrightarrow{AC}•\overrightarrow{AB}$=4;若E为线段AC上的动点,则$\overrightarrow{AC}•\overrightarrow{BE}$的取值范围是[-4,1].

查看答案和解析>>

同步练习册答案