精英家教网 > 高中数学 > 题目详情
设函数f(x)=2x,则如图所示的函数图象对应的函数是(  )
分析:由题意可知,图象关于y轴对称且图象位于y轴下方,函数值均为负值,说明函数为偶函数,再结合特殊值,利用排除法分析选项可得正确答案.
解答:解:因为当x=0时,y=-1,所以排除A,D.
又因为函数的图象关于y轴对称,所以函数为偶函数,所以排除B,
所以C正确.
故选C.
点评:本题考查函数的图象的应用,考查了学生视图、分析图形的能力以及分析问题解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、设函数f(x)=2x+3,g(x)=3x-5,则f(g(1))=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

给定实数a(a≠
12
),设函数f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的导数f′(x)的图象为C1,C1关于直线y=x对称的图象记为C2
(Ⅰ)求函数y=f′(x)的单调区间;
(Ⅱ)对于所有整数a(a≠-2),C1与C2是否存在纵坐标和横坐标都是整数的公共点?若存在,请求出公共点的坐标;若不若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(2x+1)(3x+a)
x
为奇函数,则a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+x-4,则方程f(x)=0一定存在根的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+m2x+n
(m、n为常数,且m∈R+,n∈R).
(Ⅰ)当m=2,n=2时,证明函数f(x)不是奇函数;
(Ⅱ)若f(x)是奇函数,求出m、n的值,并判断此时函数f(x)的单调性.

查看答案和解析>>

同步练习册答案