精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,的重心,.

1求证:平面

2若侧面底面,求直线与平面所成角的正弦值.

【答案】1见解析;2.

【解析】

试题分析:1 连接,并延长,交于点,过,交于点,分别连接,只要证明所以平面平面,由面面平行的性质可证平面2由题意先证明侧面底面,由面面垂直的性质可证平面,所以可以为原点,分别以轴,轴,轴建立空间直角坐标系,求出平面的法向量以及直线的方向向量,由空间向量夹角公式求之即可.

试题解析: 1证明:连接,并延长,交于点,过,交于点,分别连接.

因为的重心,所以.………………1分

,所以.

又据三棱柱性质知

所以.………………2分

又因为平面平面

所以平面.

又因为平面

所以平面平面.………………3分

又因为平面

所以平面.………………4分

2连接.

因为

所以

所以,所以.

因为侧面底面,侧面底面平面

所以平面.

因为,所以是等边三角形,

所以.………………6分

为原点,分别以轴,轴,轴建立空间直角坐标系,

所以

所以.………………8分

设平面的一个法向量为,则

所以

………………10分

所以.

所以.即直线与平面所成角的正弦值为.……………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列其前项和满足其中

(1)设证明数列是等差数列

(2)设为数列的前项和求证

(3)设为非零整数),试确定的值使得对任意都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】开门大吉是某电视台推出的游戏益智节目.选手面对扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金.(奖金金额累加)但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:(单位:岁),其猜对歌曲名称与否人数如图所示.

(1)写出列联表:判断是否有的把握认为猜对歌曲名称与否与年龄有关?

说明你的理由.(下面的临界值表供参考)

(2)若某选手能正确回答第一、二、三、四扇门的概率分别为,正确回答一个问题后,选择继续回答下一个问题的概率是,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为,求的分布列及数学期望.

(参考公式其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的两个焦点为 ,离心率为,点 在椭圆上, 在线段上,且的周长等于

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过圆 上任意一点作椭圆的两条切线与圆交于点 ,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1若曲线在点处与直线相切,求的值;

2若函数有两个零点,试判断的符号,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 是焦点,直线是经过点的任意直线.

(Ⅰ)若直线与抛物线交于两点,且是坐标原点, 是垂足),求动点的轨迹方程;

(Ⅱ)若两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分为14分)已知定义域为R的函数是奇函数.

1)求ab的值;

2)若对任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数).

(1)当时,求函数的图象在点处的切线方程;

(2)设函数(其中为常数),若函数在区间上不存在极值,且存在

,求的取值范围;

(3)已知,求证:

查看答案和解析>>

同步练习册答案