精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,离心率为,过右焦点作直线交椭圆两点,的周长为,点.

1)求椭圆的方程;

2)设直线的斜率,请问是否为定值?若是定值,求出其定值;若不是,说明理由.

【答案】(1)(2)是定值,且为

【解析】

1)由的周长为,得到,即.再由离心率求得,从而可得,得椭圆方程

2)直线l斜率不存在时,,直线轴不垂直时,设直线的方程为,由直线方程与椭圆方程联立消元,可得,计算,并代入可得.这样就得出结论.

1)由的周长为,得到,即.

又因为,所以

所以椭圆的方程为.

2)当直线轴不垂直时,

设直线的方程为

把直线的方程代入,得

因为

.

当直线轴垂直时,,即

所以,即是定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是( )

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

A. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关

B. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关

C. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关

D. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A叶上,则跳四次之后停在A叶上的概率是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,,且,则该三棱锥的外接球的表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数是偶函数.

1)求的解析式;.

2)若不等式上恒成立,求n的取值范围;

3)若函数恰好有三个零点,求k的值及该函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足:存在正整数T,对于任意正整数n都有成立,则称数列为周期数列,周期为T.已知数列满足,则下列结论中错误的是(

A.,则m可以取3个不同的值;

B.,则数列是周期为3的数列;

C.对于任意的T≥2,存在,使得是周期为的数列

D.存在,使得数列是周期数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年入冬以来,各地雾霾天气频发,频频爆表(是指直径小于或等于微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与的浓度是否相关,某市现采集周一到周五某一时间段车流量与的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

50

51

54

57

58

的浓度(微克/立方米)

69

70

74

78

79

1)请根据上述数据,在上面给出的坐标系中画出散点图;

2)试判断是否具有线性关系,若有请求出关于的线性回归方程,若没有,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行绿水青山就是金山银山,坚持人与自然和谐共生的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示:

1)求的值;

2)求出样本的平均数(同一组数据用该区间的中点值作代表);

3)现在要从年龄较小的第12组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求第2组中抽到人的概率.

查看答案和解析>>

同步练习册答案