精英家教网 > 高中数学 > 题目详情
已知a是实数,函数f(x)=x2(x-a)
(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(2)a>0,求f(x)的单调增区间.
分析:(1)求导数,利用导数的几何意义求切线方程.
(2)利用导数求函数的单调增区间.
解答:解:(1)f′(x)=3x2-2ax,
因为f′(1)=3-2a=3,所以a=0.
又当a=0时,f(1)=1,f′(1)=3,
所以曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-2=0…(6分)
(2)令f′(x)=0,解得x1=0,x2=
2a
3
2a
3
>0,
所以由f′(x)>0,解得x>
2a
3
,或x<0,
即f(x)在(-∞,0),(
2
3
a,+∞)
上单调递增…(6分)
点评:本题主要考查了导数的几何意义,以及利用导数研究函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=x2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=
43
ax3+x2-(a+5)x
,如果函数y=f(x)在区间[-1,1]上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=2ax2+2x-3-a
(1)若f(x)≤0在R上恒成立,求a的取值范围.
(2)若函数y=f(x)在区间[-1,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)已知a是实数,函数f(x)=x3-(a+
32
)x2
+2ax+1
(Ⅰ)若f′(2)=4,求a的值及曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求f(x)在区间[1,4]上的最大值.

查看答案和解析>>

同步练习册答案