精英家教网 > 高中数学 > 题目详情
1.求下列函数的定义域和值域.
(1)y=f(x)=log3(x2-3x-4);
(2)y=log3(x2+4x+7).

分析 (1)(2)结合二次函数的性质求出函数的定义域、值域即可.

解答 解:(1)由x2-3x-4>0,解得:x>4或x<-1,
∴函数的定义域是:(-∞,-1)∪(4,+∞),
函数y=x2-3x-4在(-∞,-1)递减,在(4,+∞)递增,
x→-1时:y→-∞,x→-∞时:y→+∞,
x→4时:y→-∞,x→+∞时:y→+∞,
∴函数的值域是(-∞,+∞);
(2)由x2+4x+7=(x+2)2+3≥3,
得函数y=log3(x2+4x+7)的定义域是R,
而y=log3(x2+4x+7)≥${log}_{3}^{3}$=1,
故函数的值域是[1,+∞).

点评 本题考查了求函数的定义域、值域问题,考查二次函数、对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车.每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年初投入了电力型公交车120辆,混合动力型公交车300辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入m辆.设an,bn分别为第n年投入的电力型公交车,混合动力型公交车的数量,设Sn,Tn分别为n年里投入的电力型公交车,混合动力型公交车的总数量.
(1)求Sn,Tn,并求n年里投入的所有新公交车的总数Fn
(2)该市计划用8年的时间完成全部更换,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.4月份,有一款服装投入某商场销售,4月1日该款服装仅售出10件,而后,每天销售的件数分别递增25件,到12日销售量最大后,每天销售的件数分别递减15件,问到月底共售出多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)计算:${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}$
(2)已知角α顶点在原点,始边与x轴非负半轴重合,终边在函数y=-3x(x≤0)的图象上.求$\frac{4sinα-2cosα}{3sinα+5cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆心为(1,1)且在直线x+y=4上截得的弦长为2$\sqrt{2}$的圆的方程是(  )
A.(x-1)2+(y-1)2=10B.(x-1)2+(y-1)2=20C.(x-1)2+(y-1)2=2D.(x-1)2+(y-1)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示的程序框图,运行相应的程序,则输出a的值为(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的周期:
(1)y=sin3x,x∈R;
(2)y=3sin$\frac{x}{4}$,x∈R;
(3)y=2sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.先把函数y=f(x)的图象向右移$\frac{π}{6}$个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的$\frac{2}{3}$,所得图象的解析式是y=2sin($\frac{1}{2}$x+$\frac{π}{3}$),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}满足a1=4,2$\sqrt{{a}_{n}}$=$\sqrt{{a}_{n}{a}_{n+1}}$+1,n∈N*
(1)证明:数列{$\frac{1}{\sqrt{{a}_{n}}-1}$}是等差数列;
(2)求使lga1+lga2+…+lgan>4成立的最小正整数n的值.

查看答案和解析>>

同步练习册答案