精英家教网 > 高中数学 > 题目详情

如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足数学公式
(1)当λ取何值时,直线PN与平面ABC所成的角θ最大;
(2)在(1)的条件下,求三棱锥P-MNC的体积.

解:(1)如图,以AB,AC,AA1分别为x,y,z轴,建立空间直角坐标系A-xyz,则P(λ,0,1),平面ABC的一个法向量为=(0,0,1)
∴sinθ==
∴当λ=时,(sinθ)max=,此时角θ最大为arcsin
(2)平面B1BCC1的法向量=(),
∴点P到平面B1BCC1的距离d==
∵S△CMN==
∴VP-CMN==
分析:(1)建立空间直角坐标系,利用向量的夹角公式,求出直线PN与平面ABC所成的角,即可求得结论.
(2)求出点P到平面B1BCC1的距离,S△CMN,即可求得三棱锥P-MNC的体积.
点评:利用向量知识解决立体几何问题的优点在于用代数化的方法解决立体几何,解题的关键在于用坐标表示空间向量,熟练掌握向量夹角公式
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案