精英家教网 > 高中数学 > 题目详情
定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点为F(c,0),p为椭圆E上任意一点.
(1)试证:若a、b、c不是等比数列,则E一定不是“黄金椭圆”;
(2)若E为黄金椭圆;问:是否存在过点F,P的直线l;使l与y轴的交点R满足
RP
=-2
PF
;若存在,求直线l的斜率K;若不存在,说明理由.
分析:(1)假设E为黄金椭圆,则e=
c
a
=
5
-1
2
,根据等比中项的性质可推断a、b、c成等比数列,与已知矛盾,故原命题成立.
(2)设直线l的方程为y=k(x-c),进而可表示出R的坐标根据及
RP
=-2
PF
,进而表示出P的坐标,把P点代入椭圆的方程整理后可解得k存在,求出k.
解答:解:(1)证明:假设E为黄金椭圆,则e=
c
a
=
5
-1
2
,即c=
5
-1
2
a

b2=a2-c2=a2-(
5
-1
2
a)2=
5
-1
2
a2=ac

即a,b,c成等比数列,与已知矛盾
故原命题成立.
(2)依题意设直线l的方程为y=k(x-c)
令x=0,有y=-kc,即R(0,-kc)
点F(c,0),设P(x,y)
RP
=(x,y+kc),
PF
=(c-x,-y)

RP
=-2
PF

∴x=2(c-x)
即p(2c,kc)
y+kc=2y
∵P在椭圆上∴
4c2
a2
+
k2c2
b2
=1

又b2=ac∴4e2+k2e=1
k2=
1-4e2
e
<0
,与k2≥0矛盾
所以,满足题意的直线不存在.
点评:本题主要考查了椭圆的简单性质,注意寻找黄金双曲线中a,b,c之间的关系,利用椭圆的性质求解,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1(-c,0)、F2(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)设E为“黄金椭圆”,问:是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-2
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)设E为“黄金椭圆”,点M是△PF1F2的内心,连接PM并延长交F1F2于N,求
|PM|
|PN|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,对于椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
,c为椭圆的半焦距,如果a,b,c不成等比数列,则椭圆E(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点为F(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)没E为黄金椭圆,问:是否存在过点F、P的直线l,使l与y轴的交点R满足
RP
=-2
PF
?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)已知椭圆E的短轴长是2,点S(0,2),求使
SP
2
取最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知E:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点为F(c,0)(c>0),则E为“黄金椭圆”是a,b,c成等比数列的(  )

查看答案和解析>>

同步练习册答案