精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知各项均不为零的数列{an}的前n项和为Sn,且满足a1c
2Snan an+1r
(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由;
(2)设
rc>4,求证:对于一切n∈N*,不等式恒成立.

解:(1)n=1时,2a1a1 a2r,∵a1c≠0,∴2cca2r
n≥2时,2Snan an+1r,①    2Sn-1an-1 anr,②
①-②,得2anan(an+1an-1).∵an≠0,∴an+1an-1=2.
a1a3a5,…,a2n-1,… 成公差为2的等差数列,a2n-1a1+2(n-1).
a2a4a6,…,a2n,… 成公差为2的等差数列, a2na2+2(n-1).
要使{an}为等差数列,当且仅当a2a1=1.即rcc2
r=-6,∴c2c-6=0,c=-2或3.
∵当c=-2,,不合题意,舍去.
∴当且仅当时,数列为等差数列            ……………………………………6分
(2)=[a1+2(n-1)]-[a2+2(n-1)]=a1a2-2.
=[a2+2(n-1)]-(a1+2n)=a2a1-2=-().     ………………………8分
   


.    ……………………………………10分
rc>4,∴>4,∴>2.∴0<<1.
又∵rc>4,∴,则0<
<1..∴<1.
所以:
>-1. 
所以:
综上,对于一切n∈N*,不等式恒成立. …………………14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案