【题目】如图,在平面直角坐标系中,椭圆: 的离心率为,直线l:y=2上的点和椭圆上的点的距离的最小值为1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 已知椭圆的上顶点为A,点B,C是上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线与的斜率分别为, .
① 求证: 为定值;
② 求△CEF的面积的最小值.
【答案】(Ⅰ)(Ⅱ)①详见解析②
【解析】试题分析:
(1)由题意求得 的值,结合椭圆焦点位于 轴上写出标准方程即可;
(2)①中,分别求得 的值,然后求解其乘积即可证得结论;
②中,联立直线与椭圆的方程,利用面积公式得出三角形面积的解析式,最后利用均值不等式求得面积的最小值即可.
试题解析:
(Ⅰ)由题知,由,
所以.
故椭圆的方程为.
(Ⅱ)① 证法一:设,则,
因为点B,C关于原点对称,则,
所以.
证法二:直线AC的方程为,
由得,
解得,同理,
因为B,O,C三点共线,则由,
整理得,
所以.
②直线AC的方程为,直线AB的方程为,不妨设,则,
令y=2,得,
而,
所以,△CEF的面积
.
由得,
则 ,当且仅当取得等号,
所以△CEF的面积的最小值为.
科目:高中数学 来源: 题型:
【题目】一企业从某条生产线上随机抽取100件产品,测量这些产品的某项技术指标值x,得到如下的频率分布表:
x | [11,13) | [13,15) | [15,17) | [17,19) | [19,21) | [21,23) |
频数 | 2 | 12 | 34 | 38 | 10 | 4 |
(Ⅰ)作出样本的频率分布直方图,并估计该技术指标值x的平均数和众数;
(Ⅱ)若x<13或x≥21,则该产品不合格.现从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于13的产品恰有一件的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系中,曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(Ⅰ) 求曲线与交点的平面直角坐标;
(Ⅱ) 点分别在曲线, 上,当最大时,求的面积(为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且a≠1,下列四组函数中表示相等函数的是( )
A.y=logax与y=(logxa)﹣1
B.y=2x与y=logaa2x
C. 与y=x
D.y=logax2与y=2logax
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)= ,其中x是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润x表示为月产量x的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的钢板的边界是抛物线的一部分,且垂直于抛物线对称轴,现欲从钢板上截取一块以为下底边的等腰梯形钢板,其中均在抛物线弧上.设(米),且.
(1)当时,求等腰梯形钢板的面积;
(2)当为何值时,等腰梯形钢板的面积最大?并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com