精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,求函数的单调区间;

2)若方程在区间内有解,求实数的取值范围.

【答案】1)函数的单调增区间是,单调减区间是.

2

【解析】

1)将代入解析式,求出,利用导数与函数单调性的关系即可求解.

2)由题意可知,其中,分类讨论:当时,利用导数判断出函数的单调性,再利用零点存在性定理即可判断有解;当时,由,得,分类讨论当,利用导数判断函数的单调性,求出函数的最大值,根据最大值结合函数的单调性即可求解.

解:(1)由题意可得

,得

时,,所以单调递减;

时,,所以单调递增;

时,,所以单调递减;

所以函数的单调增区间是

单调减区间是.

2)由题意可知,其中

①当时,由于,得,故上为增函数,

,所以方程有解;

②当时,由,得(舍).

i)当,即时,

因为,所以,即

,所以上为减函数,

所以

所以此时方程在区间没有解;

ii)当,即时,上为增函数,

上为减函数,所以当时,

方程在区间才有解,

,解得时,或(不合题意,舍去),

所以,当时,方程在区间有解;

综上,当时,方程在区间有解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为上一点.

(1)求椭圆的方程;

(2)设分别关于两坐标轴及坐标原点的对称点,平行于的直线于异于的两点.点关于原点的对称点为.证明:直线轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难题的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):

(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;

(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;

(3)定义统计量,其中为第题的实测难度, 为第题的预估难度(.规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】总体由编号为0102...394040个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如下表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为(

60 44 66 44 21

66 06 58 05 62

61 65 54 35 02

42 35 48 96 32

14 52 41 52 48

92 66 22 15 86

96 63 75 41 99

58 42 36 72 24

A.23B.21C.35D.32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实现有效利用扶贫资金,增加贫困村民的收入,扶贫工作组结合某贫困村水质优良的特点,决定利用扶贫资金从外地购买甲、乙、丙三种鱼苗在鱼塘中进行养殖试验,试验后选择其中一种进行大面积养殖,已知鱼苗甲的自然成活率为0.8.鱼苗乙,丙的自然成活率均为0.9,且甲、乙、丙三种鱼苗是否成活相互独立.

1)试验时从甲、乙,丙三种鱼苗中各取一尾,记自然成活的尾数为,求的分布列和数学期望;

2)试验后发现乙种鱼苗较好,扶贫工作组决定购买尾乙种鱼苗进行大面积养殖,为提高鱼苗的成活率,工作组采取增氧措施,该措施实施对能够自然成活的鱼苗不产生影响.使不能自然成活的鱼苗的成活率提高了50%.若每尾乙种鱼苗最终成活后可获利10元,不成活则亏损2元,且扶贫工作组的扶贫目标是获利不低于37.6万元,问需至少购买多少尾乙种鱼苗?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)求出易倒伏玉米茎高的中位数

2)根据茎叶图的数据,完成下面的列联表:

抗倒伏

易倒伏

矮茎

高茎

3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高一年级一班至六班进行了社团活动满意度调查(结果只有满意不满意两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:

班号

一班

二班

三班

四班

五班

六班

频数

4

5

11

8

10

12

满意人数

3

2

8

5

6

6

现从一班和二班调查对象中随机选取4人进行追踪调查,则选中的4人中恰有2人不满意的概率为___________;若将以上统计数据中学生持满意态度的频率视为概率,在高一年级全体学生中随机抽取3名学生,记其中满意的人数为X,则随机变量X的数学期望是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy上取两个定点A10),A20),再取两个动点N10m),N20n),且mn2.

1)求直线A1N1A2N2交点M的轨迹C的方程;

2)过R30)的直线与轨迹C交于PQ,过PPNx轴且与轨迹C交于另一点NF为轨迹C的右焦点,若λ1),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,短轴长为2,直线l与椭圆有且只有一个公共点.

1)求椭圆的方程;

2)是否存在以原点O为圆心的圆满足:此圆与直线l相交于PQ两点(两点均不在坐标轴上),且OPOQ的斜率之积为定值,若存在,求出此定值和圆的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案