精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+cos(2x-$\frac{π}{6}$).
(Ⅰ)求f($\frac{π}{6}$)的值;
(Ⅱ)求函数f(x)的最小正周期和单调递增区间.

分析 (Ⅰ)利用已知表达式,直接求解f($\frac{π}{6}$)的值;
(Ⅱ)化简函数的表达式,利用函数f(x)的周期公式求解,通过正弦函数的单调递增区间求解即可.

解答 解:(Ⅰ)因为f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+cos(2x-$\frac{π}{6}$).
所以f($\frac{π}{6}$)=$\sqrt{3}$sin(2×$\frac{π}{6}$-$\frac{π}{6}$)+cos(2×$\frac{π}{6}$-$\frac{π}{6}$)
=$\sqrt{3}sin\frac{π}{6}+cos\frac{π}{6}$=$\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}$=$\sqrt{3}$-------------------------(4分)
(Ⅱ)因为f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+cos(2x-$\frac{π}{6}$).
所以f(x)=2($\frac{\sqrt{3}}{2}$sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$cos(2x-$\frac{π}{6}$))
=2sin(2x-$\frac{π}{6}$+$\frac{π}{6}$)
=2sin2x.--------------(8分)
所以周期T=$\frac{2π}{2}$=π.--------------------------(10分)
令$2kπ-\frac{π}{2}≤2x≤2kπ+\frac{π}{2}$,--------------------------(11分)
解得$kπ-\frac{π}{4}≤x≤kπ+\frac{π}{4}$,k∈Z.
所以f(x)的单调递增区间为$[kπ-\frac{π}{4},kπ+\frac{π}{4}]$,k∈Z.--------------------------(13分)

点评 本题考查三角函数的化简求值,两角和与差的三角函数,三角函数的正确的求法,得到求解的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若α是第二象限角,tan(π-α)=2,则$\frac{sinαcosα}{1+co{s}^{2}α}$=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\sqrt{3-2si{n}^{2}x}$的值域为[1,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.利用诱导公式求下列各式的值
(1)sin120°;      
(2)cos135°;
(3)tan$\frac{2π}{3}$;       
(4)cos(-$\frac{19π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知直线l:2$\sqrt{2}x-y+3+8\sqrt{2}$=0和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2$\sqrt{3}$.
(1)求圆C1的方程;
(2)设圆C1和x轴相交于A,B两点,点P为圆C1上不同于A,B的任意一点,直线PA,PB交y轴于M,N两点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知Πn是正项等比数列{an}的前n项积,且满足a7>1,a8<1,则下列结论正确的是(  )
A.Π7<Π8B.Π15<Π16C.Π13>1D.Π14>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)(x∈R)关于$(-\frac{3}{4},0)$对称,且$f(x)=-f(x+\frac{3}{2})$则下列结论:(1)f(x)的最小正周期是3,
(2)f(x)是偶函数,(3)f(x) 关于$x=\frac{3}{2}$对称,(4)f(x)关于$(\frac{9}{4},0)$对称,正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{px+q}{{{x^2}+1}}$(p,q为常数)是定义在(-1,1)上的奇函数,且$f(1)=\frac{1}{2}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)判断并用定义证明f(x)在(-1,1)上的单调性;
(Ⅲ)解关于x的不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l:y-3=k(x+1)必经过定点(-1,3).

查看答案和解析>>

同步练习册答案