精英家教网 > 高中数学 > 题目详情
18.已知i为虚数单位,则复数$\frac{1}{1+i}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数$\frac{1}{1+i}$=$\frac{1-i}{(1+i)(1-i)}$=$\frac{1}{2}-\frac{1}{2}$i在复平面内对应的点$(\frac{1}{2},-\frac{1}{2})$位于第四象限.
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈N|-1<x<5},B={x|-x2+5x+6>0},则A∩B=(  )
A.{-1,0,1,3}B.{-1,0,1,2}C.{-1,0,1}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,0<x<2}\\{{{(\frac{2}{3})}^x}+\frac{5}{9},x≥2}\end{array}}\right.$.若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是$(\frac{5}{9},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设x、y满足约束条件$\left\{{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤2}\end{array}}\right.$,则z=-2x+3y的最小值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点(1,2)且与直线y=2x+1垂直的直线的方程为(  )
A.x+2y-3=0B.2x-y+4=0C.x+2y+3=0D.x+2y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.
(1)证明:PF⊥FD;
(2)若PA=1,求点E到平面PFD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且|AF|=2|BF|,则直线AB的斜率为(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$2\sqrt{2}$或$-2\sqrt{2}$D.$2\sqrt{3}或-2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过抛物线y2=4x的焦点F且斜率为$2\sqrt{2}$的直线交抛物线于A,B两点(xA>xB),则$\frac{{|{AF}|}}{{|{BF}|}}$=(  )
A.$\frac{3}{2}$B.$\frac{3}{4}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E为AC的中点,侧棱CC1=2.
(1)求证:A1C⊥平面C1EB;
(2)求直线CC1与平面ABC所成角的余弦值.

查看答案和解析>>

同步练习册答案