精英家教网 > 高中数学 > 题目详情
如图,边长为4的正方形ABCD与正三角形ADP所在的平面相互垂直,且M、N分别为PB、AD中点.
(1)求证:MN∥面PCD;
(2)求直线PC与平面PNB所成角的正弦值.
考点:直线与平面所成的角,直线与平面平行的判定
专题:空间位置关系与距离,空间角
分析:(1)取PC的中点G,连结MG、DG,由已知得四边形DNMG为平行四边形,由此能证明MN∥面PDC.
(2)连接BN、NC、PN,过点C作CH⊥BN,垂足为H,连结PH由已知得∠CPH为直线PC与平面PNB所成的角,由此能求出直线PC与平面PNB所成角的正弦值.
解答: (1)证明:取PC的中点G,连结MG、DG,在△PBC中,
∵M、G分别为PB、PC的中点,∴MG∥BC,且MG=
1
2
BC,又ND=
1
2
AD,
∴MG
.
DN,故四边形DNMG为平行四边形,
∴MN∥DG,又DG?平面PDC,M?N平面PDC,
∴MN∥面PDC.…(6分)
(2)解:连接BN、NC、PN,因为面ADP⊥面ABCD,且PN⊥AD,
所以PN⊥面ABCD,又PN?面PNB,所以面PNB⊥面ABCD.
过点C作CH⊥BN,垂足为H,连结PH,∴CH⊥面PNB,
故∠CPH为直线PC与平面PNB所成的角,…(8分)
在正方形ABCD中,由已知条件,令∠ABN=∠BCH=θ,
∴CH=BCcosθ=4×
2
5
=
8
5
,…(10分)
在Rt△PNC中,∵PN=2
3
,NC=2
5
,∴PC=4
2

在Rt△CHP中,sin∠CPH=
CH
PC
=
8
4
2
×
5
=
10
5
.…(12分)
点评:本题考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1:3x+4y-2=0和直线l2:2x+y+2=0,则l1与l2交点的坐标是
 
;直线3x+4y-2+λ(2x+y+2)=0恒过定点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的奇函数f(x),当x∈(-∞,0)时f(x)+xf′(x)<0恒成立,若a=2f(2),b=ln2•f(ln2),c=-f(-1),则a,b,c的大小关系为(  )
A、a>b>c
B、c>b>a
C、a>c>b
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
x
-2x)6,x<0
-
x
,x≥0
则x>0时,f[f(x)]表达式中的展开式中的常数项为
 
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,且a≠1,f(logax)=
1
a2-1
(x-
1
x
)

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试判定函数f(x)的奇偶性与单调性;
(Ⅲ)若对于函数f(x),当θ∈R时,f(a+cos2θ)+f(4sinθ-6)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+sinx-2cosx的图象在点A(x0,f(x0))处的切线斜率为3,则tanx0的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线2x2-y2=1的离心率为(  )
A、
6
2
B、
2
C、
3
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某班学生喜爱打篮球是否与性别有关,对本班60人进行了问卷调查得到了如下的2×2列联表:
喜爱打篮球不喜爱打篮球合计
男生24832
女生121628
合计362460
(I)用分层抽样的方法在喜爱打篮球的学生中抽6人,其中男生抽多少人?
(Ⅱ)在上述抽取的人中选2人,求恰有一名女生的概率;
(Ⅲ)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
P(X2≥x0)或P(K2≥k00.100.050.0100.005
x0(或k02.7063.8416.6357.879
(参考公式:X2=
n(n11n13-n13n21)2
n1+n2+n+1n+1
,其中n=n11+n12+n21+n12或K2=
n(nd-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d))

查看答案和解析>>

科目:高中数学 来源: 题型:

AB为圆O的直径,点E、F在圆上,AB∥EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1.
(Ⅰ)求证:BF⊥平面DAF;
(Ⅱ)求ABCD与平面CDEF所成锐二面角的某三角函数值;
(Ⅲ)求多面体ABCDFE的体积.

查看答案和解析>>

同步练习册答案