精英家教网 > 高中数学 > 题目详情

【题目】如下图,梯形中,,,, ,将沿对角线折起.设折起后点的位置为,并且平面 平面.给出下面四个命题:

;②三棱锥的体积为;③ 平面

平面平面.其中正确命题的序号是( )

A. ①② B. ③④ C. ①③ D. ②④

【答案】B

【解析】

利用折叠前四边形中的性质与数量关系,可证出然后结合平面 平面,可得平面,从而可判断①③;三棱锥的体积为,可判断②;因为平面,从而证明,再证明平面,然后利用线面垂直证明面面垂直.

平面 平面,且平面 平面

平面

平面

不成立,故错误

棱锥的体积为,故②错误;

平面,故正确

平面

平面

,且平面,

平面,又平面,

平面 平面,故正确.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直三棱柱中,分别是 的中点,为棱上的点.

(1)证明:

(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= eax(a>0).
(1)当a=2时,求曲线y=f(x)在x= 处的切线方程;
(2)讨论方程f(x)﹣1=0根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品按质量分10个档次,生产最低档次的利润是8/件;每提高一个档次,利润每件增加2元,每提高一个档次,产量减少3件,在相同时间内,最低档次的产品可生产60件.问:在相同时间内,生产第几档次的产品可获得最大利润?(最低档次为第一档次)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;

(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月74月15日与4月21日这三天的数据,求出关于的线性回归方程,并判定所得的线性回归方程是否可靠?

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ADEF与梯形ABCD所在的平面互相垂直,ADCD,ABCD,AB=AD=CD=2,点M是线段EC的中点.

(1)求证:BM平面ADEF;

(2)求证:平面BDE平面BEC;

(3)求平面BDM与平面ABF所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1中,E、F分别为棱DD1和BC中点G为棱A1B1上任意一点,则直线AE与直线FG所成的角为(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xln(x﹣1)﹣a(x﹣2).
(Ⅰ)若a=2017,求曲线f(x)在x=2处的切线方程;
(Ⅱ)若当x≥2时,f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 (a>b>0)如图,已知椭圆C:的左、右焦点分别为F1、F2 , 离心率为 ,点A是椭圆上任一点,△AF1F2的周长为 . (Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(﹣4,0)任作一动直线l交椭圆C于M,N两点,记 ,若在线段MN上取一点R,使得 ,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

查看答案和解析>>

同步练习册答案