精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面为矩形,平面中点.

(1)证明://平面
(2)证明:平面.
(1)参考解析;(2)参考解析

试题分析:(1)直线与平面平行的证明,根据判断定理要在平面内找一条直线与与该直线平行.所以要证//平面,找到直线即可.
(2)要证直线与平面垂直根据判断定理要在平面内找到两条相交的直线与该直线垂直即可.通过分析直线AE⊥PD由题意可得;另外直线CD垂直平面PAD,所以有可得直线CD垂直直线AE.又由于直线CD与直线PD相交,所以可证得结论.
试题解析:证明:(1)因为底面为矩形,
所以 .又因为 平面平面
所以 //平面.
(2)因为中点,

所以,因为 平面
所以.又底面为矩形,
所以.
所以平面.
所以.
所以平面.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥中,平面,底面是直角梯形,
.

(1)求证:平面
(2)求证:平面
(3)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在圆锥中,已知的直径,点在底面圆周上,且的中点.

(1)证明:平面
(2)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱锥中,底面是平行四边形,平面的中点,.

(1)试判断直线与平面的位置关系,并予以证明;
(2)若四棱锥体积为  ,,求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体ABCD-A1B1C1D1中,下面结论中正确的是________(把正确结论的序号都填上).
BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体,点分别是线段上的动点,观察直线.给出下列结论:
①对于任意给定的点,存在点,使得
②对于任意给定的点,存在点,使得
③对于任意给定的点,存在点,使得
④对于任意给定的点,存在点,使得

其中正确结论的个数是(   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在正方体中,点是棱上的一个动点,平面交棱于点.则下列命题中假命题是(    )
A.存在点,使得//平面
B.存在点,使得平面
C.对于任意的点,平面平面
D.对于任意的点,四棱锥的体积均不变

查看答案和解析>>

同步练习册答案