精英家教网 > 高中数学 > 题目详情
15.已知$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=4,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.-$\sqrt{3}$B.$\sqrt{5}$C.3D.10

分析 根据向量长度的求法:$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{(\overrightarrow{a}-\overrightarrow{b})^{2}}$,根据条件进行数量积的运算即可求得答案.

解答 解:根据条件,$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{(\overrightarrow{a}-\overrightarrow{b})^{2}}=\sqrt{9-8+4}=\sqrt{5}$.
故选:B.

点评 考查向量长度的求法:|$\overrightarrow{a}$|=$\sqrt{{\overrightarrow{a}}^{2}}$,向量的数量积的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{m}$=(2sinx,-$\sqrt{3}$),$\overrightarrow{n}$=(cosx,2cosx2-1),若函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1,
(1)求f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)若f(x)-m<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知m≥0,满足条件$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ y≤mx-m\end{array}\right.$的目标函数z=x+my的最大值小于2,则m的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.茎叶图中,甲组数据的中位数是(  )
A.31B.$\frac{31+36}{2}=33.5$C.36D.37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了提高农村医疗条件,某市购买了30辆完全相同的救护车,准备发给5个乡镇卫生院,每个卫生院至少2辆,则不同的发放方案的种数为(  )
A.C255B.C244C.C254D.C245

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过曲线y=f(x)=$\frac{x}{1-x}$图象上一点(2,-2)及邻近一点(2+△x,-2+△y)作割线,则当△x=0.5时割线的斜率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:$\frac{{sin{{610}^0}}}{1-cos(-1510°)}•\sqrt{\frac{tan470°+sin110°}{{tan470°-sin{{110}^0}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从甲、乙两名运动员的若干次训练成绩中随机抽取6次,分别为
甲:7.7,7.8,8.6,8.7,9.3,9.5
乙:7.6,8.2,8.5,8.6,9.2,9.5
(1)根据以上的茎叶图,对甲、乙运动员的成绩作比较,写出两个统计结论;
(2)从甲、乙运动员6次成绩中各随机抽取1次成绩,求甲、乙运动员的成绩至少有一个高于8.5分的概率.
(3)经过对甲、乙运动员若干次成绩进行统计,发现甲运动员成绩均匀分布在[7,10]之间,乙运动员成绩均匀分布在[7.5,9.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.5分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15
(1)求数列{an}的通项公式;
(2)求当n取何值时,Sn取得最大值,并求它的最大值.

查看答案和解析>>

同步练习册答案