精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,直线经过的右顶点和上顶点.

(1)求椭圆的方程;

(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆两点,求的面积的最大值.

【答案】(1) .(2) .

【解析】试题分析:

1)由题意得到右顶点和上顶点的坐标,得到的值后可得椭圆的方程.(2)设出直线方程,可得点到直线的距离.结合直线方程与椭圆方程联立消元后所得的一元二次方程,可求得弦长,根据求得后,根据函数求最值的方法可求得的最大值.

试题解析:

(1)在方程中,

,得,所以上顶点的坐标为,故

,得,所以右顶点的坐标为,故

所以椭圆的方程为.

2)由条件可得直线过点,且斜率存在,

设其方程为,即

消去y整理得

∵直线与椭圆交于两点

解得

又点到直线的距离

所以当,即时, 有最大值,且最大值为

经检验知满足,故的面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面为菱形, , 为等边三角形

(1)求证: ;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了缓解城市交通压力,某市市政府在市区一主要交通干道修建高架桥,两端的桥墩现已建好,已知这两桥墩相距m米,余下的工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元.

(1)试写出工程费用y关于x的函数关系式;

(2)m640米时,需新建多少个桥墩才能使工程费用y最小?并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|x22x30}B{x|x22mxm240xRmR}

(1)AB[0,3],求实数m的值;

(2)ARB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最小值;

(2)若对任意,不等式恒成立,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠ABC=60°,ACBD相交于点O,AE⊥平面ABCD,CF//AE,AB=AE=2.

(1)求证:BD⊥平面ACFE;

(2)当直线FO与平面BDE所成的角为45°时,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)2x的定义域为(01](a为实数).

(1)a1求函数yf(x)的值域;

(2)求函数yf(x)在区间(01]上的最大值及最小值并求出当函数f(x)取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)若存在满足.求证 (其中的导函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设成立; 成立. 如果“”为真,“”为假,求实数的取值范围.

查看答案和解析>>

同步练习册答案