精英家教网 > 高中数学 > 题目详情

已知,处的切线方程为
(Ⅰ)求的单调区间与极值;
(Ⅱ)求的解析式;
(III)当时,恒成立,求的取值范围.

(Ⅰ) 的增区间为,减区间为.
(Ⅱ) ,(III) .

解析试题分析:利用导数求函数的单调性、极值,根据导数的几何意义求函数的解析式;利用导数判定最值的方法求参数的取值范围.
试题解析:(Ⅰ)令,得,              1分
∴当时,;当时,.
的增区间为,减区间为, 3分
(Ⅱ) ,所以.

,∴
所以                           6分
(III)当时,,令
时,矛盾,                8分
首先证明恒成立.
,故上的减函数,
,故               10分
由(Ⅰ)可知故当时,
 
综上         12分
考点:导数的应用,导数的几何意义,导数最值的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若在区间[0,2]上恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数
(1)当时,求最小值;
(2)若存在单调递减区间,求的取值范围;
(3)求证:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x-ax+(a-1).
(1)讨论函数的单调性;(2)若,设
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x,x,xx,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数,分别是的导函数,若在区间上恒成立,则称在区间上单调性一致.
(Ⅰ)设,若函数在区间上单调性一致,求实数的取值范围;
(Ⅱ)设,若函数在以为端点的开区间上单调性一致,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数
(Ⅰ)当时,求函数的单调增区间;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数().
(Ⅰ)当时,求函数的极值;   
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<)图像上一个最高点坐标为(2,2),这个最高点到相邻最低点的图像与x轴交于点(5,0).

(1)求f(x)的解析式;
(2)是否存在正整数m,使得将函数f(x)的图像向右平移m个单位后得到一个偶函数的图像?若存在,求m的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案