精英家教网 > 高中数学 > 题目详情

【题目】根据下列条件解三角形,有两解的有(

A.已知ab2B45°B.已知a2bA45°

C.已知b3cC60°D.已知a2c4A45°

【答案】BD

【解析】

直接利用三角形的解的情况的判定理的应用和正弦定理的应用求出结果.

解:对于选项A:由于ab2B45°,利用正弦定理,解得sinA,由于ab,所以A,所以三角形有唯一解.

对于选项B:已知a2bA45°,利用正弦定理,解得,,,故三角形有两解.

对于选项C:已知b3cC60°,所以利用正弦定理,所以sinB1.51,故三角形无解.

对于选项D:已知a2c4A45°,由于acsinA,即以顶点B为圆心,a为半径的圆与AC射线有两个不同交点,故三角形有两解.

故选:BD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直角的三边长,满足.

Ⅰ)在之间插入个数,使这个数构成以为首项的等差数列,且它们的和为,求斜边的最小值;

Ⅱ)已知均为正整数,成等差数列,将满足条件的三角形的面积从小到大排成一列,,求满足不等式的所有的值;

Ⅲ)已知成等比数列,若数列满足,证明:数列中的任意连续三项为边长均可以构成直角三角形,是正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为,其中为参数,且在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)设是曲线上的一点,直线被曲线截得的弦长为,求点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集上的奇函数,且当时, .

(Ⅰ)求函数上的解析式;

(Ⅱ)判断上的单调性;

(Ⅲ)当取何值时,方程上有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数与常数,若恒成立,则称为函数的一个“数对”;设函数的定义域为,且.

(Ⅰ)若的一个“数对”,且,求常数的值;

(Ⅱ)若的一个“数对”,求;

(Ⅲ)若的一个“数对”,且当, ,求的值及在区间上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上一个圆可以将平面分成两个部分,两个圆最多可以将平面分成4个部分,设平面上个圆最多可以将平面分成个部分.

的值;

猜想的表达式并证明;

证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)求证:

(3)若对于任意的,恒有成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最高点为

1)求的解析式;

2)先把函数的图象向左平移个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,试写出函数的解析式.

3)在(2)的条件下,若存在,使得不等式成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同时抛掷两枚骰子,并记下二者向上的点数,求:

二者点数相同的概率;

两数之积为奇数的概率;

二者的数字之和不超过5的概率.

查看答案和解析>>

同步练习册答案