精英家教网 > 高中数学 > 题目详情
15.已知点C(3,4),抛物线y2=8x的准线为L,设抛物线上任意一点P到直线L的距离为m,则m+|PC|的最小值为(  )
A.5B.$\sqrt{41}$C.$\sqrt{41}$-2D.4

分析 求出抛物线的准线方程,过P作PM⊥l,交于点M,由C,P,M三点共线时,m+|PC|取得最小值,即可得到所求最小值.

解答 解:抛物线y2=8x的准线为l:x=-2,
过P作PM⊥l,交于点M,
当C,P,M三点共线时,m+|PC|取得最小值,
且为|CM|=3+2=5.
故选:A.

点评 本题考查抛物线的方程和性质,考查两点间的距离最短的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)在R上是奇函数,当x>0时,f(x)=x2+4x,则x<0时f(x)的解析式f(x)=-x2+4x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正方体ABCD-A′B′C′D′,记过点A与三条直线AB,AD,AA′所成角都相等的直线条数为m,过点A与三个平面AB′,AC,AD′所成角都相等的直线的条数为n,则下面结论正确的是(  )
A.m=1,n=1B.m=4,n=1C.m=3,n=4D.m=4,n=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知(1-x)n的展开式中,前三项的二项式系数之和是22,求展开式中的中间项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法中正确的个数是(  )
①f(x)=x+1,x∈[-2,0]的零点为(-1,0);
②f(x)=x+1,x∈[-2,0]的零点为-1;
③y=f(x)的零点,即y=f(x)的图象与x轴的交点;
④=f(x)的零点,即y=f(x)的图象与x轴的交点的横坐标.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.己知函数f(x)=ax2+bx+1(a>0).
(1)?x∈R,函数f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)有最大值1,求函数f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)的单调区间;
(2)?x∈R,都有f(x)≥|x|成立,求4a-b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的奇函数f(x)满足f(x)=f(x+3),当x∈(0,$\frac{3}{2}$)时,f(x)=sin πx,且f($\frac{3}{2}$)=0,则函数f(x)在区间[-6,6]上的零点个数是(  )
A.18B.17C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x>0,y>0,8x+2y-xy=0,则x+y的最小值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2-ax+4在(-∞,1)上是减函数,则实数a的取值范围是[2,+∞).

查看答案和解析>>

同步练习册答案