精英家教网 > 高中数学 > 题目详情
若函数y=f(x)是偶函数,x∈R,在x<0时,y=f(x)是增函数,对于x1<0,x2>0,且|x1|<|x2|,则(  )
分析:偶函数f(x)在(-∞,0)上单调递增,知其在(0,+∞)上单调递减,其图象的特征是自变量的绝对值越大,函数值越小,由此特征即可选出正确选项.
解答:解:由偶函数f(x)在(-∞,0)上单调递增,知其在(0,+∞)上单调递减,
其图象的特征是自变量的绝对值越大,函数值越小,
∵对于任意x1<0,x2>0,有|x1|<|x2|,
∴0<-x1<x2
∴f(-x1)=f(x1)>f(-x2)=f(x2
即f(-x1)>f(-x2
故选A
点评:本题考点是函数的奇偶性,考查偶函数的图象的性质,本题在求解时综合利用函数的奇偶性与单调性得出判断
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)是函数y=ax(0<a≠1)的反函数,其图象经过点(
a
,a),则函数y=f(x+
4
x
-3)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)是奇函数,则
1
-1
f(x)dx=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f′(x)是函数y=f(x)的导函数,则f′(x)>0是函数f(x)为增函数的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)是函数y=logax(a>0且a≠1)的反函数,且f(2)=
1
9
,则f(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)是函数y=ax(0<a≠1)的反函数,其图象过点(
a
,a)
,且函数y=-f(x+
m
x
-3)
在区间(2,+∞)上是增函数,则正数m的取值范围是
 

查看答案和解析>>

同步练习册答案