精英家教网 > 高中数学 > 题目详情

【题目】已知点为直线上的动点,,过作直线的垂线的中垂线于点,记点的轨迹为.

(Ⅰ)求曲线的方程;

(Ⅱ)若直线与圆相切于点,与曲线交于两点,且为线段的中点,求直线的方程.

【答案】(Ⅰ)(Ⅱ)直线的方程为

【解析】

(Ⅰ)由已知可判断:点的轨迹是以为焦点,为准线的抛物线,结合已知即可求得曲线的方程

(Ⅱ)设,联立直线与椭圆方程可得:,利用中点坐标公式即可求得:,利用点在圆上及列方程组可得:,解得:,问题得解。

解:(Ⅰ)由已知可得,

即点到定点的距离等于它到直线的距离,

故点的轨迹是以为焦点,为准线的抛物线,

∴曲线的方程为.

(Ⅱ)设

,得

,即

∵直线与圆相切于点

,且

从而

即:

整理可得,即

故直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是曲线上的动点,延长是坐标原点)到,使得,点的轨迹为曲线

1)求曲线的方程;

2)若点分别是曲线的左、右焦点,求的取值范围;

3)过点且不垂直轴的直线与曲线交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 若不等式对任意上恒成立,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的直线与椭圆交于不同的两点,其中为坐标原点

(1),求的面积;

(2)在轴上是否存在定点,使得直线的斜率互为相反数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形PBCD中, APD的中点,如下左图。将沿AB折到的位置,使,点ESD上,且,如下图。

1)求证: 平面ABCD

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面

1)证明:平面

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的方程;

(2)如图,过定点的直线交椭圆两点,连接并延长交,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/小时,已知该汽车每小时的运输成本P()关于速度v(千米/小时)的函数关系是.

1)求全程运输成本Q(元)关于速度v的函数关系式;

2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是A,值域是;的定义域是C,值域是,且实数满足.下列命题中,正确的有( )

A.如果对任意,存在,使得,那么;

B.如果对任意,任意,使得,那么;

C.如果存在,存在,使得,那么;

D.如果存在,任意,使得,那么.

查看答案和解析>>

同步练习册答案