精英家教网 > 高中数学 > 题目详情

已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.
求:(1)求圆的方程;
(2)设直线与圆相交于两点,求实数的取值范围;
(3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦
若存在,求出实数的值;若不存在,请说明理由.

(1)(2)
(3)

解析试题分析:(1)设圆心为),利用直线与圆相切的位置关系,根据点到直线的距离公式列方程解得的值,从而确定圆的方程;
(2)直线与圆交于不同的两点,利用圆心到直线的距离小于圆的半径列不等式从而解出实数的取值范围;
(3)根据圆的几何性质,垂直平分弦的直线必过圆心,从而由两点确定直线的斜率,进一步由两直线垂直的条件确定实数的值.
试题解析:(1)设圆心为).
由于圆与直线相切,且半径为,所以,
.因为为整数,故
故所求的圆的方程是
(2)直线.代入圆的方程,消去整理,得
.由于直线交圆于两点,
,即,解得 ,或
所以实数的取值范围是
(3)设符合条件的实数存在,由(2)得,则直线的斜率为
的方程为,即
由于垂直平分弦,故圆心必在上.
所以,解得.由于
所以存在实数,使得过点的直线垂直平分弦.
考点:1、圆的标准方程;2、直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,圆与坐标轴交于点.
⑴求与直线垂直的圆的切线方程;
⑵设点是圆上任意一点(不在坐标轴上),直线轴于点,直线交直线于点
①若点坐标为,求弦的长;②求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求过点P(,且被圆C:截得的弦长等于8的直线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线kxy+6=0被圆x2y2=25截得的弦长为8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求证:不论m取什么实数,直线l与圆C恒交于两点;
(2)求直线被圆C截得的弦长最小时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.
(1)求实数b的取值范围;
(2)求圆C的方程;
(3)圆C是否经过定点(与b的取值无关)?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为r1=13;圆弧C2过点A(29,0).

(1)求圆弧C2所在圆的方程;
(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.
(1)已知不过原点的直线与圆相切,且在轴,轴上的截距相等,求直线的方程;
(2)求经过原点且被圆截得的线段长为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.
(1)若直线过点,且与圆相切,求直线的方程;
(2)若圆的半径为4,圆心在直线上,且与圆内切,求圆 的方程.

查看答案和解析>>

同步练习册答案