【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:
网购金额(单位:千元) | 频数 | 频率 | 网购金额(单位:千元) | 频数 | 频率 | |
[0,0.5) | 3 | 0.05 | [1.5,2) | 15 | 0.25 | |
[0.5,1) | [2,2.5) | 18 | 0.30 | |||
[1,1.5) | 9 | 0.15 | [2.5,3] |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.
(1)确定,,,的值,并补全频率分布直方图;
(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;
②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
科目:高中数学 来源: 题型:
【题目】2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.
(Ⅰ)根据已知条件完成下面的2×2列联表:据此材料,是否有95%的把握认为投票结果与性别有关?
支持希拉里 | 支持特朗普 | 合计 | |
男员工 | |||
女员工 | |||
合计 |
(Ⅱ)若从该公司的所有男员工中随机抽取3人,记其中支持特朗普的人数为X,求随机变量X的分布列和数学期望.(用相应的频率估计概率)
附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x﹣7|+1.
(1)求不等式f(x)≤x的解集;
(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,
求二面角E—AF—C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五面体ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD= .
(1)求证:PN∥AB;
(2)求NC与平面BDN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图四面体ABCD中,△ABC是正三角形,AD=CD.(12分)
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是等比数列,则下列结论中正确的是( )
A. 若a1=1,a5=4,则a3=﹣2
B. 若a1+a3>0,则a2+a4>0
C. 若a2>a1,则a3>a2
D. 若a2>a1>0,则a1+a3>2a2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com