精英家教网 > 高中数学 > 题目详情

【题目】已知两点,线段的直径

1)求的方程;

2)若经过点的直线截得的弦长为8,求此直线的方程.

【答案】(1) ;(2) .

【解析】

(1) 根据题意,由的坐标可得线段的中点,即的坐标,求出的长,即可得圆的半径,由圆的标准方程即可得答案;

(2)由垂径定理可知圆心到直线的距离, 设直线的方程为,结合点到直线的距离公式,可得的值,即可得出结论,注意讨论斜率不存在的情况.

(1) 根据题意,点点,,则线段的中点为,的坐标为, 是以线段为直径的圈,则其半径,的方程为.

(2)根据勾股定理可知圆心到直线的距离,

若直线斜率不存在时, 符合题意;

若直线斜率存在,设直线的方程为,

,,解得,

所以直线的方程为.

综上直线的方程为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,已知D是边AC上一点,将沿BD折起,得到三棱锥.若该三棱锥的顶点A在底面BCD的射影M在线段BC上,设,则x的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三角形的边长为2,是边的中点,动点满足,且,其中,则的最大值为( )

A.1B.C.2D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )

A.128.5米B.132.5米C.136.5米D.110.5米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:函数在区间存在唯一的极小值点,且

(2)证明:函数有且仅有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)当时,求曲线处的切线方程;

(Ⅱ)讨论的极值点的个数;

(Ⅲ)若y轴右侧的图象都不在x轴下方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图.四棱柱的底面是直角梯形,,四边形均为正方形.

1)证明;平面平面ABCD

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形.且,点的中点.

1)求证:

2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥是梯形,

)证明:平面平面

)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案