【题目】设函数(为自然对数的底数),若曲线上存在点使得,则的取值范围是
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.
(1)打进的电话在响5声之前被接的概率是多少?
(2)打进的电话响4声而不被接的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资商到邢台市高开区投资万元建起一座汽车零件加工厂,第一年各种经费万元,以后每年增加万元,每年的产品销售收入万元.
(Ⅰ)若扣除投资及各种费用,则该投资商从第几年起开始获取纯利润?
(Ⅱ)若干年后,该投资商为投资新项目,需处理该工厂,现有以下两种处理方案:① 年平均利润最大时,以万元出售该厂;
② 纯利润总和最大时,以万元出售该厂.
你认为以上哪种方案最合算?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,在底面ABCD中,AD//BC,AD⊥CD,Q是AD的中点,M是棱PC的中点,PA=PD=2,BC=AD=1,CD=,PB=.
(Ⅰ)求证:平面PAD⊥底面ABCD;
(Ⅱ)试求三棱锥B-PQM的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点, 为椭圆:上异于点A,B的任意一点.
(Ⅰ)求证:直线、的斜率之积为-;
(Ⅱ)是否存在过点的直线与椭圆交于不同的两点、,使得?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区为了解居民参加体育锻炼的情况,从该社区随机抽取了18名男性居民和12名女性居民,对他们参加体育锻炼的情况进行问卷调查.现按是否参加体育锻炼将居民分成两类:甲类(不参加体育锻炼)、乙类(参加体育锻炼),结果如下表:
甲类 | 乙类 | |
男性居民 | 3 | 15 |
女性居民 | 6 | 6 |
(Ⅰ)根据上表中的统计数据,完成下面的列联表;
男性居民 | 女性居民 | 总计 | |
不参加体育锻炼 | |||
参加体育锻炼 | |||
总计 |
(Ⅱ)通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?
附:,其中.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.
(1)已知函数,利用上述性质,求函数的单调区间和值域;
(2)已知函数=和函数,若对任意,总存在,使得(x2)=成立,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,长度为3的线段的端点、分别在,轴上滑动,点在线段上,且,
(1)若点的轨迹为曲线,求其方程;
(2)过点的直线与曲线交于不同两点、,是曲线上不同于、的动点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com