精英家教网 > 高中数学 > 题目详情
双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知|
OA
|、|
AB
|、|
OB
|成等差数列,且
BF
FA
同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.
分析:(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.
(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,可求出双曲线方程.
解答:解:(1)设双曲线方程为
x2
a2
-
y2
b2
=1,c2=a2+b2
BF
FA
同向,
∴渐近线的倾斜角为(0,
π
4
),
∴渐近线斜率为:k1=
b
a
<1∴
b2
a2
=
c2-a2
a2
=e2-1<1,∴1<e2<2

∴|AB|2=(|OB|-|OA|)(|OB|+|OA|)=(|OB|-|OA|)2|AB|,
|AB|=2(|OB|-|OA|)∴
|OB|-|OA|=
1
2
|AB
|OA|+|OB|=2|AB

|OA|=
3
4
|AB|∴|OA|2=
9
16
|AB|2

可得:
|AB|
|OA|
=
4
3
,而在直角三角形OAB中,
注意到三角形OAF也为直角三角形,即tan∠AOB=
4
3

而由对称性可知:OA的斜率为k=tan
1
2
∠AOB

2k
1-k2
=
4
3
,∴2k2+3k-2=0,∴k=
1
2
(k=-2舍去)

b
a
=
1
2
b2
a2
=
c2-a2
a2
=
1
4
,∴e2=
5
4

e=
5
2

(2)由第(1)知,a=2b,可设双曲线方程为
x2
4b2
-
y2
b2
=1,c=
5
b,
∴AB的直线方程为 y=-2(x-
5
b),代入双曲线方程得:15x2-32
5
bx+84b2=0,
∴x1+x2=
32
5
b
15
,x1•x2=
84b2
15

4=
(1+4)[( 
32
5
b
15
)
2
 - 4 •
84b2
15
,16=
32b2
9
-
4×84b2
3

∴b2=9,所求双曲线方程为:
x2
36
-
y2
9
=1.
点评:做到边做边看,从而发现题中的巧妙,如据
|AB|
|OA|
=
4
3
,联想到对应的是2渐近线的夹角的正切值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直l1的直线分别交l1,l2于A,B两点,己知|
OA
|,|
AB
|,|
OB
|
成等差数列,且
BF
FA
同向,则双曲线的离心率
 

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知成等差数列,且同向,
(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程。

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1、l2,经过右焦点F垂直于l1的直线分别交l1、l2于A、B两点。已知成等差数列,且同向。
(1)求双曲线的离心率;
(2)设AB被双曲线所截得的线段的长为4,求双曲线的方程。

查看答案和解析>>

科目:高中数学 来源:2008年全国统一高考数学试卷Ⅰ(理科)(解析版) 题型:解答题

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

同步练习册答案