精英家教网 > 高中数学 > 题目详情
18.已知A(0,2),B(3,1)是椭圆G:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$上的两点.
(1)求椭圆G的离心率;
(2)已知直线l过点B,且与椭圆G交于另一点C(不同于点A),若以BC为直径的圆经过点A,求直线l的方程.

分析 (1)将A和B点的坐标代入椭圆G的方程,列出方程组求出a和b的值,再求出c和离心率;
(2)由(1)求出椭圆G的方程,对直线l的斜率进行讨论,不妨设直线l的方程,与椭圆G的方程联立后,利用韦达定理写出式子,将条件转化为$\overrightarrow{AB}•\overrightarrow{AC}=0$,由向量数量积的坐标运算列出式子,代入化简后求出k的值,即得直线l的方程.

解答 解:(1)∵椭圆G过A(0,2),B(3,1),
∴$\left\{\begin{array}{l}{b=2}\\{\frac{9}{{a}^{2}}+\frac{1}{{b}^{2}}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2\sqrt{3}}\\{b=2}\end{array}\right.$,
则$c=\sqrt{{a}^{2}-{b}^{2}}$=$2\sqrt{2}$,
∴椭圆G的离心率e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$;
(2)由(1)得,椭圆G的方程是$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1$,
①当直线的斜率不存在时,则直线BC的方程是x=3,
代入椭圆G的方程得,C(3,-1),不符合题意;
②当直线的斜率存在时,设斜率为k,C(x1,y1),
则直线BC的方程为y=k(x-3)+1,
由$\left\{\begin{array}{l}{y=k(x-3)+1}\\{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1}\end{array}\right.$得,(3k2+1)x2-6k(3k-1)x+27k2-18k-3=0,
∴3+x1=$\frac{6k(3k-1)}{3{k}^{2}+1}$,3x1=$\frac{3(9{k}^{2}-6k-1)}{3{k}^{2}+1}$,则x1=$\frac{9{k}^{2}-6k-1}{3{k}^{2}+1}$,
∵以BC为直径圆经过点A,
∴AB⊥AC,则$\overrightarrow{AB}•\overrightarrow{AC}=0$,即(3,-1)•(x1,y1-2)=0,
∴3x1-y1+2=0,即3x1-[k(x1-3)+1]=0,
∴(3-k)x1+3k+1=0,(3-k)•$\frac{9{k}^{2}-6k-1}{3{k}^{2}+1}$+3k+1=0,
化简得,18k2-7k-1=0,
解得k=$-\frac{1}{2}$ 或k=$\frac{1}{9}$,
∴直线BC的方程为y=$-\frac{1}{2}$(x-3)+1或y=$\frac{1}{9}$(x-3)+1,
即直线BC的方程是x+2y-5=0或x-9y+6=0,
综上得,直线l的方程是x+2y-5=0或x-9y+6=0.

点评 本题考查了待定系数法求椭圆标准方程,直线与椭圆位置关系,向量数量积的坐标运算,以及“设而不求”的解题思想方法,考查转化思想,化简、变形、计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知f(x)=ax7-bx5+cx3+2,且f(-5)=m,则f(5)的值为(  )
A.2-mB.4C.2mD.-m+4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等腰三角形的周长为常数l,底边长为y,腰长为x,则函数y=f(x)的定义域为($\frac{l}{4}$,$\frac{l}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直角坐标平面内两点A,B满足:
①A,B均在函数f(x)的图象上;
②A,B关于原点对称.
则称点对[A,B]为函数f(x)的一对“匹配点对”(点对[A,B]与[B,A]视作同一对).
若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,则此函数的“匹配点对”共有(  )对.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*.
(1)求数列{an},{bn}的通项an和bn
(2)求证:$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<\frac{1}{2}$;
(3)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=$\frac{{2}^{x+1}}{{2}^{x}+1}$与函数y=$\frac{x+1}{x}$的图象共有k(k∈N*)个公共点,A1(x1,y1),A2(x2,y2),…,Ak(xk,yk),则$\sum_{i=1}^{k}$(xi+yi)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,则该几何体的体积为(  )
A.6B.$\frac{20}{3}$C.7D.$\frac{22}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在正方形ABCD-A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,
①四边形BFD1E一定是平行四边形
②四边形BFD1E有可能是正方形
③四边形BFD1E在底面ABCD内的投影一定是正方形
④四边形BFD1E有可能垂直于平面BB1D
以上结论正确的为①③④.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\vec a,\vec b$,那么$\frac{1}{2}(2\vec a-4\vec b)+2\vec b$等于(  )
A.$\vec a-2\vec b$B.$\overrightarrow{a}$-4$\vec b$C.$\vec a$D.$\vec b$

查看答案和解析>>

同步练习册答案