精英家教网 > 高中数学 > 题目详情

【题目】是方程的两个不等实数根,记.下列两个命题(

①数列的任意一项都是正整数;

②数列存在某一项是5的倍数.

A.①正确,②错误B.①错误,②正确

C.①②都正确D.①②都错误

【答案】A

【解析】

利用韦达定理可得,,结合可推出,再计算出,,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误.

因为,是方程的两个不等实数根,

所以,,

因为,

所以

,

即当,数列中的任一项都等于其前两项之和,

,,

所以,,,

以此类推,即可知数列的任意一项都是正整数,故①正确;

若数列存在某一项是5的倍数,则此项个位数字应当为05,

,,依次计算可知,

数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,

故数列中不存在个位数字为05的项,故②错误;

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线.

1)若抛物线的焦点到准线的距离为4,点在抛物线上,线段的中点为,求直线的方程;

2)若圆以原点为圆心,1为半径,直线分别相切,切点分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点按照逆时针方向排列,点的极坐标为.

(Ⅰ)求点的直角坐标;

(Ⅱ)设上任意一点,求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数,为常数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)当直线与曲线相切时,求出常数的值;

2)当为曲线上的点,求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论上的单调性.

(2)当时,若上的最大值为,讨论:函数内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以分组的频率分布直方图如图所示.

根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;

用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布

估计该市居民月平均用电量介于度之间的概率;

利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:

①存在实数,使得

的否定是存在

③掷一枚质地均匀的正方体骰子,向上的点数不小于3的概率为

④在闭区间上取一个随机数,则的概率为

其中所有的真命题为________.(填写所有正确的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此中元素的含量不小于18毫克时,该产品为优等品.

(1)试用样品数据估计甲、乙两种产品的优等品率;

(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望

(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件,求事件的概率.

查看答案和解析>>

同步练习册答案