精英家教网 > 高中数学 > 题目详情
精英家教网如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BFiDE丄平面ABCD,G为EF中点.
(1)求证:CF∥平面
(2)求证:平面ASG丄平面CDG;
(3)求二面角C-FG-B的余弦值.
分析:(1)利用平面BCF中,有两条相交直线BC和BF平行于两一个平面中的两条相交直线 AD 和DE,得到平面BCF∥平面ADE,再由面面平行的性质得到CF∥平面;
(2)由勾股定理 求得GM、GN的长,证明GM⊥GN,利用等腰三江凹形的性质证明GN⊥CD,从而GN⊥AB,得到 GN垂直于平面ABG,从而证得平面ABG丄平面CDG;
(3)由已知中由已知可得CG⊥FG,结合(2)中结论GO⊥EF,由二面角的定义可得:∠CGO为二面角C-FG-B的平面角,解三角形CGO,即可得到二面角C-FG-B的余弦值.
解答:证明:(1)∵四边形ABCD为正方形,四边形BDEF为矩形,
∴BC∥AD,BF∥DE,
∵平面BCF中,有两条相交直线BC,BF平行于两一个平面中的两条相交直线 AD,DE,
故有平面BCF∥平面ADE,
∴CF∥平面ADE.
(2)取AB的中点M,CD的中点N.
∵AB=2BF,设BF=1,则AB=2.
∵DE丄平面ABCD,
可得面BDEF⊥面ABCD.
设AC 和BD交于点 O,则GO⊥面ABCD.
∴GM=
GO2+OM2
=
2
=GN,又 MN=2,
∴由勾股定理可得 GM⊥GN.
由G为EF中点,可得GC=GD=
2

∴GN⊥CD,GN⊥AB.
这样面CDG中的直线GN垂直于平面GAB内的两条相交直线AB和 GM,
∴平面ABG丄平面CDG.
(3)由已知可得CG⊥FG,由(2)GO⊥EF
∴∠CGO为二面角C-FG-B的平面角
∴cos∠CGO=
OG
CG
=
3
3
点评:本题考查证明线面平行、面面垂直的方法,线面平行、面面垂直的判定定理,证明GN垂直于平面ABG,是解题的难点和关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案