精英家教网 > 高中数学 > 题目详情

【题目】如图1,在等腰中,分别为的中点,的中点,在线段上,且。将沿折起,使点的位置(如图2所示),且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值

【答案】(1)证明见解析

(2)

【解析】

1)要证明线面平行,需证明线线平行,取的中点,连接,根据条件证明,即

(2)以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,求两个平面的法向量,利用法向量求二面角的余弦值.

(1)证明:取的中点,连接.

,∴的中点.

的中点,∴.

依题意可知,则四边形为平行四边形,

,从而.

平面平面

平面.

(2),且

平面平面

,且

平面

为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,不妨设

.

设平面的法向量为

,即

,得.

设平面的法向量为

,即

,得.

从而

故平面与平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】绿水青山就是金山银山.近年来,祖国各地依托本地自然资源,打造旅游产业,旅游业正蓬勃发展.景区与游客都应树立尊重自然、顺应自然、保护自然的生态文明理念,合力使旅游市场走上规范有序且可持续的发展轨道.某景区有一个自愿消费的项目:在参观某特色景点入口处会为每位游客拍一张与景点的合影,参观后,在景点出口处会将刚拍下的照片打印出来,游客可自由选择是否带走照片,若带走照片则需支付20元,没有被带走的照片会收集起来统一销毁.该项目运营一段吋间后,统计出平均只有三成的游客会选择带走照片,为改善运营状况,该项目组就照片收费与游客消费意愿关系作了市场调研,发现收费与消费意愿有较强的线性相关性,并统计出在原有的基础上,价格每下调1元,游客选择带走照片的可能性平均增加0.05,假设平均每天约有5000人参观该特色景点,每张照片的综合成本为5元,假设每个游客是否购买照片相互独立.

1)若调整为支付10元就可带走照片,该项目每天的平均利润比调整前多还是少?

2)要使每天的平均利润达到最大值,应如何定价?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列A: ,… ().如果对小于()的每个正整数都有 ,则称是数列A的一个“G时刻”.是数列A的所有“G时刻组成的集合.

(1)对数列A:-2,2,-1,1,3,写出的所有元素

(2)证明:若数列A中存在使得>,则

(3)证明:若数列A满足- ≤1(n=2,3, …,N),的元素个数不小于 -.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的定义域为,且存在实常数a,使得对于定义域内任意x,都成立,则称此函数具有性质

1)判断函数是否具有“性质”,若具有“性质”,求出所有a的值的集合;若不具有“性质”,请说明理由;

2)已知函数具有“性质”,且当时,,求函数在区间上的值域;

3)已知函数具有“性质”,又具有“性质”,且当时,,若函数的图像与直线2017个公共点,求实数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,的中点.

1)证明:

2)若,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆C上.

(1)求椭圆C的标准方程;

(2)过椭圆上异于其顶点的任意一点Q作圆的两条切线,切点分别为不在坐标轴上),若直线x轴,y轴上的截距分别为,证明:为定值;

(3)若是椭圆上不同两点,轴,圆E,且椭圆上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱底面直角梯形,是棱上一点,.

(1)求异面直线所成的角;

(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求函数的极值;

(2)问:是否存在实数,使得有两个相异零点?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于,直线l与椭圆C交于两点.

1)求椭圆C的方程;

2)过点O作直线l的垂线,垂足为D.,求动点D的轨迹方程.

查看答案和解析>>

同步练习册答案