精英家教网 > 高中数学 > 题目详情
20.若关于x的不等式$\frac{bx}{ax+1}$+$\frac{dx+c}{cx+d}$<0的解集为(-2,-1)∪($\frac{1}{3}$,1),则关于x的不等式$\frac{b}{x+a}$+$\frac{cx+d}{dx+c}$<0的解集为$(-1,-\frac{1}{2})∪(1,3)$.

分析 把要求解的不等式变形,分子分母同时除以x后把$\frac{1}{x}$看作一个整体,由已知不等式的解集得到$\frac{1}{x}$的范围,进一步求出x的取值范围得答案.

解答 解:若x=0不符合题意,则x≠0,
由$\frac{b}{x+a}+\frac{cx+d}{dx+c}<0$$\frac{bx}{ax+1}+\frac{dx+c}{cx+d}<0$得,$\frac{b•\frac{1}{x}}{1+a•\frac{1}{x}}+\frac{c+d•\frac{1}{x}}{d+c•\frac{1}{x}}<0$,
即$\frac{b•\frac{1}{x}}{a•\frac{1}{x}+1}+\frac{d•\frac{1}{x}+c}{c•\frac{1}{x}+d}<0$,
设t=$\frac{1}{x}$,则不等式变为$\frac{bt}{at+1}+\frac{dt+c}{ct+d}<0$,
因为不等式$\frac{bx}{ax+1}$+$\frac{dx+c}{cx+d}$<0的解集为(-2,-1)∪($\frac{1}{3}$,1),
所以-2<$\frac{1}{x}$<-1或$\frac{1}{3}<$$\frac{1}{x}$<1,
解得-1<x<$-\frac{1}{2}$或1<x<3,
所以所求的不等式解集是$(-1,-\frac{1}{2})∪(1,3)$,
故答案为:$(-1,-\frac{1}{2})∪(1,3)$.

点评 本题考查不等式的解法,考查转化思想、整体思想,以及换元法的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.不等式(x-a)(ax-1)<0的解集是$(-∞,\frac{1}{a})∪(a,+∞)$,则实数a的取值范围是[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)将关于x的不等式|x-3|+|x-4|<2;
(2)如果关于x的不等式|x-3|+|x-4|<a的解集是空集,求实数a的取值范围;
(3)对任意x∈R,|2-x|+|3+x|≥a2-4a恒成立,求a的取值范围;
(4)已知m∈R,解关于x的不等式1-x≤|x-m|≤1+x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设l,m,n表示三条直线,α,β,γ表示三个平面,给出下列六个命题:
  ①若1⊥α,m⊥α,则l∥m;
  ②若l⊥α,m?β,l∥m,则α⊥β;
  ③若l⊥α,m?β,l⊥m,则α∥β;
  ④若m?β,n是l在β内的射影,m⊥l,则m⊥n;
  ⑤若m?α,m∥n,则n∥α;
  ⑥若α⊥γ,β⊥γ,则α∥β.
  其中正确命题的个数是(  )
A.1B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图的平面直角坐标系中,O为坐标原点,点B在单位圆上,A(2,0),∠AOB=θ,△ABC为等边三角形.
(1)若直线OB的斜率为$\frac{2}{3}$,求$\frac{si{n}^{2}θ-sin2θ}{co{s}^{2}θ+cos2θ}$的值;
(2)若θ∈(0,π),求四边形OACB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆C:x2+y2-6x-8y+23=0的半径为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线ax+4y-a=0与直线6x+8y+5=0平行,则这两直线间的距离为1.1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中,正确的是(  )
A.$\overrightarrow{a}$与$\overrightarrow{b}$共线,$\overrightarrow{b}$与$\overrightarrow{c}$共线,则$\overrightarrow{a}$与$\overrightarrow{c}$也共线
B.任意两个相等的非零向量的始点与终点总是一平行四边形的四个顶点
C.向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,则$\overrightarrow{a}$与$\overrightarrow{b}$都是非零向量
D.有相同起点的两个非零向量不平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.将雨数y=f(x)的图象上各点的纵坐标缩短到原来的$\frac{1}{3}$倍,再将曲线上各点的横坐标伸长到原来的2倍,然后把整个曲线向左平移$\frac{π}{3}$,得到函数y=sinx的图象,求函数f(x)的解析式,并画出函数y=f(x)在长度为一个周期的闭区间上的简图.

查看答案和解析>>

同步练习册答案