精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆 过点,其左、右焦点分别为,离心率 是椭圆右准线上的两个动点,且

1)求椭圆的方程;

2)求的最小值;

3)以为直径的圆是否过定点?请证明你的结论.

【答案】(1) ;(2);(3过定点证明见解析.

【解析】试题分析:(1)因为且过点列出关于的方程,解得最后写出椭圆方程即可;(2)设点写出向量的坐标,利用向量的数量积得到结合基本不等式即可求得最小值;(3)利用圆心的坐标和半径得出圆的方程,再令从而得出圆过定点.

试题解析:1 ,且过点

解得 椭圆方程为.

2)设点

的最小值为

3)圆心的坐标为,半径.

的方程为

整理得: .

,得 . 过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中b是常数.
(1)若y=f(x)是奇函数,求b的值;
(2)求证:y=f(x)是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=2x
(1)若f(x)= ,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论,其中正确的是(
A.若 ,则a<b
B.“a=3“是“直线l1:a2x+3y﹣1=0与直线l2:x﹣3y+2=0垂直”的充要条件
C.在区间[0,1]上随机取一个数x,sin 的值介于0到 之间的概率是
D.对于命题P:?x∈R使得x2+x+1<0,则?P:?x∈R均有x2+x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为12,则 + 的最小值为(
A.4
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(0,1)上是增函数的是(
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数值域是(0,+∞)的是(
A.y=
B.y=( 12x
C.y=
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=loga 是奇函数(其中a>1)
(1)求m的值;
(2)判断f(x)在(2,+∞)上的单调性并证明;
(3)当x∈(r,a﹣2)时,f(x)的取值范围恰为(1,+∞),求a与r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lg[log x﹣1)]的定义域为集合A,集合B={x|x<1,或x≥3}.
(1)求A∪B,(RB)∩A;
(2)若2a∈A,且log2(2a﹣1)∈B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案